如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC

如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是______.... 如图所示,AB是圆O的直径,C是异于A,B两点的圆周上的任意一点,PA垂直于圆O所在的平面,则△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是______. 展开
 我来答
登徒tenar
推荐于2018-04-10 · TA获得超过216个赞
知道答主
回答量:179
采纳率:94%
帮助的人:63.1万
展开全部
证明:∵AB是圆O的直径
∴∠ACB=90°即BC⊥AC,三角形ABC是直角三角形
又∵PA⊥圆O所在平面,
∴△PAC,△PAB是直角三角形.
且BC在这个平面内,
∴PA⊥BC 因此BC垂直于平面PAC中两条相交直线,
∴BC⊥平面PAC,
∴△PBC是直角三角形.
从而△PAB,△PAC,△ABC,△PBC中,直角三角形的个数是:4.
故答案为:4

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式