一道高中数学题。。。求解答过程和最终答案
2015-07-07
展开全部
用的是错位相减法,结果为n
Sn=a1+4a2+4^2a3...+4^(n-1)an
4Sn=4a1+4^2a2+4^3a3...+4^nan
5Sn=[a1+4a2+4^2a3...+4^(n-1)an]+[4a1+4^2a2+4^3a3...+4^nan]
=a1+{4(a1+a2)+4^2(a2+a3)+...+4^(n-1)*[a(n-1)+an]}+4^nan
=(1+4^nan)+{4*(1/4)^1+(4^2)*(1/4)^2+...+[4^(n-1)]*[(1/4)^(n-1)]}
=1+4^nan+(n-1)*1=4^nan+n
于是5Sn-4^nan=n
Sn=a1+4a2+4^2a3...+4^(n-1)an
4Sn=4a1+4^2a2+4^3a3...+4^nan
5Sn=[a1+4a2+4^2a3...+4^(n-1)an]+[4a1+4^2a2+4^3a3...+4^nan]
=a1+{4(a1+a2)+4^2(a2+a3)+...+4^(n-1)*[a(n-1)+an]}+4^nan
=(1+4^nan)+{4*(1/4)^1+(4^2)*(1/4)^2+...+[4^(n-1)]*[(1/4)^(n-1)]}
=1+4^nan+(n-1)*1=4^nan+n
于是5Sn-4^nan=n
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询