定积分中的瑕点是什么
如果函数f(x)在点a的一个邻域内无界,那么点a称为函数f(x)的瑕点(也称无界间断点)。无界函数的反常积分又称为瑕积分。
广义积分积分限中使积分函数不存在的点。
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式
也可简写为:∫ v du = uv - ∫ u dv
扩展资料
常用积分公式:
1)∫0dx=c
2)2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c 基本积分公式
14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c
16) ∫sec^2 x dx=tanx+c;
17) ∫shx dx=chx+c;
18) ∫chx dx=shx+c;
19) ∫thx dx=ln(chx)+c。
参考资料来源:百度百科-瑕点
有些过于优雅,优雅得入云端,不食人间烟火,使人不知所云;
有些过于低俗,低俗得下地狱,不顾人间廉耻,使人不寒而栗。
前者如暇点、、、、,后者如夹逼、、、、、
都堂而皇之频频出现在大学微积分教材,都声声缭绕在大学的讲堂,
很多男教师却总是环顾着女神女汉子带着既猥琐又得意的淫荡微笑。
1、暇积分,就是 improper integral
就是积分区域出现两种情况之一,或全部出现:
A、积分区域有无穷型间断点;
B、积分区域包括无穷大,可能是负无穷大,可能是正无穷大,
可能两者兼而有之。
2、我们将 improper integral 这个非常规积分,分为两种,
暇积分,就是有断点的,断点处的函数值是无穷大;
广义积分,就是积分区域至少包含一侧是无穷大的。
3、暇积分,就是包括下点的,这个暇点,我们又称为奇点,
英文是 singularity。
对于暇积分跟广义积分的处理方法是:
A、先按常规积分 proper integral 积出来;
B、再取极限计算,得到结论。
若有疑问,欢迎追问,有问必答、有疑必释、有错必纠,直到满意。
举个例子:
比如说如果函数f(x)在点a的任一邻域内都无界,那么点a就称为函数f(x)的瑕点也无脑地称为无界间断点。
比如说如果函数f(x)在点a的任一邻域内都无界,那么点a就称为函数f(x)的瑕点也无脑地称为无界间断点