计算二重积分∫∫(√(x²+y²))/(√(4a²-x²-y²)) dб,其中D是由y=-a+√
是用极坐标来做吗?我用了极坐标在第一次求定积分的时候就不会了。。。 展开
解答:
在极坐标下
D={(r,θ)|0≤r≤-2asinθ,-π/4≤θ≤0}
解法一:
∫∫(√(x²+y²))/(√(4a²-x²-y²)) dσ
=∫(-π/4,0)dθ∫(0,-2asinθ)[r²/√(4a²-r²)]dr
=∫(-π/4,0)dθ∫(0,-2asinθ){[4a²-(4a²-r²)]/√(4a²-r²)}dr
=∫(-π/4,0)dθ{∫(0,-2asinθ)[4a²/√(4a²-r²)]dr-∫(0,-2asinθ)√(4a²-r²)dr}.........①
记大括号中的值为I,则
I=∫(0,-2asinθ)[4a²/√(4a²-r²)]dr-∫(0,-2asinθ)√(4a²-r²)dr
=4a²*arcsin(r/2a)|(0,-2asinθ)-∫(0,-2asinθ)√(4a²-r²)dr
=-4a²θ-∫(0,-2asinθ)√(4a²-r²)dr....................................................②
对于积分∫(0,-2asinθ)√(4a²-r²)dr的解法有两种:
方法一:套用不定积分公式∫√(a²-x²)dx=(a²/2)arcsin(x/a)+(1/2)x√(a²-x²)+C
(其证明过程有两种,一种是换元法,另一种是分部积分法,证明从略)
所以,
∫(0,-2asinθ)√(4a²-r²)dr
=[(4a²)/2]arcsin(r/2a)+(1/2)r√(4a²-r²)=-2a²θ-a²sin2θ
代入②,得
I=-4a²θ-[-2a²θ-a²sin2θ]=-2a²θ+a²sin2θ,代入①,得
∫∫(√(x²+y²))/(√(4a²-x²-y²)) dσ
=∫(-π/4,0)(-2a²θ+a²sin2θ)dθ
=(π²/16-1/2)a²
方法二:利用圆的几何性质,令s=√(4a²-r²),则r²+s²=4a²,则该定积分可以看成是以(0,0)为圆心,以2a为半径的圆内r∈(0,2asin(-θ)的面积,如图阴影部分的面积即为所求。
该阴影部分可分为三角形和扇形,
S三角形=(1/2)*2asin(-θ)*2acosθ)=-a²sin2θ
S扇形=(1/2)*(2a)²*(π/2+θ)=πa²+2a²θ
所以,∫(0,-2asinθ)√(4a²-r²)dr=S阴影=S三角形+S扇形=πa²+2a²θ-a²sin2θ,代入①得
∫∫(√(x²+y²))/(√(4a²-x²-y²)) dσ
=∫(-π/4,0)(πa²+2a²θ-a²sin2θ)dθ
=(π²/16-1/2)a²
解法二:
∫∫(√(x²+y²))/(√(4a²-x²-y²)) dσ
=∫(-π/4,0)dθ∫(0,-2asinθ)[r²/√(4a²-r²)]dr
=∫(-π/4,0)dθ∫(0,-θ)[(4a²sin²u)/√(4a²cos²u)]*2acosudu(令r=2asinu)
=4a²∫(-π/4,0)dθ∫(0,-θ)sin²udu
=4a²∫(-π/4,0)dθ∫(0,-θ)[(1-cos2u)/2]du
=4a²∫(-π/4,0)[(-1/2)θ+(1/4)sin2θ)]dθ
=(π²/16-1/2)a²