用初等行代换把下列矩阵化为行最间形矩阵(102-1,2031,3043)
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
1个回答
展开全部
写出矩阵为
1 0 2 -1
2 0 3 1
3 0 4 3 r2-2r1,r3-3r1
~
1 0 2 -1
0 0 -1 3
0 0 -2 6 r1+2r1,r3-2r2,r2*(-1)
~
1 0 0 5
0 0 1 -3
0 0 0 0
这样就得到了最简型矩阵
1 0 2 -1
2 0 3 1
3 0 4 3 r2-2r1,r3-3r1
~
1 0 2 -1
0 0 -1 3
0 0 -2 6 r1+2r1,r3-2r2,r2*(-1)
~
1 0 0 5
0 0 1 -3
0 0 0 0
这样就得到了最简型矩阵
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询