证明:2013×2014×2015×2016+1是一个数的平方
展开全部
设 A = 2013
A(A+1)(A+2)(A+3)+1
= (AA + A)(AA + 5A + 6) + 1
= AAAA + 5AAA + 6AA + AAA + 5AA + 6A + 1
= AAAA + 6AAA + 11AA + 6A + 1
= AAAA + 6AAA + 2AA + (9AA + 6A + 1)
= AAAA + 2AA(3A + 1) + (3A + 1)(3A + 1)
= [AA + (3A + 1)][AA + (3A + 1)]
A(A+1)(A+2)(A+3)+1
= (AA + A)(AA + 5A + 6) + 1
= AAAA + 5AAA + 6AA + AAA + 5AA + 6A + 1
= AAAA + 6AAA + 11AA + 6A + 1
= AAAA + 6AAA + 2AA + (9AA + 6A + 1)
= AAAA + 2AA(3A + 1) + (3A + 1)(3A + 1)
= [AA + (3A + 1)][AA + (3A + 1)]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询