(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1的末位数字. 怎么做?(详细过程)
展开全部
(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1
先乘以(2^2-1) 再除以(2^2-1)
得:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1
=[(2+1)(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+(2^2-1)]/(2^2-1)
=[(2+1)(2^128-1)+(2^2-1)]/(2^2-1)
=[(2+1)(2^128-1)]/(2^2-1)+1
=2^128
由于2^1=2 2^2=4 2^3=8 2^4=16
2^5=32 2^6=64
2^n末位是以(2,4,8,6)四个数为一周期循环
128/4=32能够整除,所以末位数是数字6
先乘以(2^2-1) 再除以(2^2-1)
得:(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+1
=[(2+1)(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)(2^32+1)(2^64+1)+(2^2-1)]/(2^2-1)
=[(2+1)(2^128-1)+(2^2-1)]/(2^2-1)
=[(2+1)(2^128-1)]/(2^2-1)+1
=2^128
由于2^1=2 2^2=4 2^3=8 2^4=16
2^5=32 2^6=64
2^n末位是以(2,4,8,6)四个数为一周期循环
128/4=32能够整除,所以末位数是数字6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询