微积分问题。用夹逼定理证明n的n次方根的极限是一。。。拜托了!!
4个回答
2015-10-31
展开全部
注意到,对于k=1,2,……,N-1,都有(N-1-k)(k-1)>=0整理得k(N-k)>=N-1上式分别取k=1,2,……,N-1.然后相乘,得(N-1)!*(N-1)!>=(N-1)^(N-1)即(N!)^2>=N^2*(N-1)^(N-1)>(N-1)^N于是得1/(N!)^(1/N)0.1/(N-1)^(1/2)当N趋于正无穷时极限显然为0所以命题得证
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询