
现有长为150cm的铁丝,要截成n(n>2)小段,
现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1(cm)的整数.如果其中任意三小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件...
现有长为150cm的铁丝,要截成n(n>2)小段,每段的长为不小于1(cm)的整数.如果其中任意三小段都不能拼成三角形,试求n的最大值,此时有几种方法将该铁丝截成满足条件的n段.
展开
展开全部
解:因为n段之和为定值150(cm),故欲n尽可能的大,必须每段的长度尽可能的小.又由于每段的长度不小于1(cm),且任意3段都不能拼成三角形,
因此这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,89,
但1+1+2+…+34+55=143<150,1+1+2+…+34+55+89=232>150,
故n的最大值为10.
将长为150(cm)的铁丝分为满足条件的10段共有以下7种方式:
1,1,2,3,5,8,13,21,34,62;
1,1,2,3,5,8,13,21,35,61;
1,1,2,3,5,8,13,21,36,60;
1,1,2,3,5,8,13,21,37,59;
1,1,2,3,5,8,13,22,35,60;
1,1,2,3,5,8,13,22,36,59;
1,1,2,3,5,8,14,22,36,58.
因此这些小段的长度只可能分别是1,1,2,3,5,8,13,21,34,55,89,
但1+1+2+…+34+55=143<150,1+1+2+…+34+55+89=232>150,
故n的最大值为10.
将长为150(cm)的铁丝分为满足条件的10段共有以下7种方式:
1,1,2,3,5,8,13,21,34,62;
1,1,2,3,5,8,13,21,35,61;
1,1,2,3,5,8,13,21,36,60;
1,1,2,3,5,8,13,21,37,59;
1,1,2,3,5,8,13,22,35,60;
1,1,2,3,5,8,13,22,36,59;
1,1,2,3,5,8,14,22,36,58.
展开全部
最大值为10,分法是1,1,2,3,5,8,13,21,34,62
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
最大值为10,分法是1,1,2,3,5,8,13,21,34,62
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、1、2、3、5、8、13、21、35、61;有10段错了找我
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询