第五六小题求详细过程
展开全部
(5)
∫[0:2]f(x)dx
=∫[0:1](1+x²)dx+∫[1:2](2-x)dx
=(x+⅓x³)|[0:1]+(2x-½x²)|[1:2]
=(1+⅓·1³)-(0+⅓·0³)+(2·2-½·2²)-(2·1-½·1²)
=1+⅓-0+4-2-2+½
=11/6
(6)
令x≥x²,x∈[0,4]
x²-x≤0
x(x-1)≤0
0≤x≤1
∫[0:4]max{x,x²}dx
=∫[0:1]xdx+∫[1:4]x²dx
=½x²|[0:1]+⅓x³|[1:4]
=½·1²-½·0²+⅓·4³-⅓·1³
=43/2
∫[0:2]f(x)dx
=∫[0:1](1+x²)dx+∫[1:2](2-x)dx
=(x+⅓x³)|[0:1]+(2x-½x²)|[1:2]
=(1+⅓·1³)-(0+⅓·0³)+(2·2-½·2²)-(2·1-½·1²)
=1+⅓-0+4-2-2+½
=11/6
(6)
令x≥x²,x∈[0,4]
x²-x≤0
x(x-1)≤0
0≤x≤1
∫[0:4]max{x,x²}dx
=∫[0:1]xdx+∫[1:4]x²dx
=½x²|[0:1]+⅓x³|[1:4]
=½·1²-½·0²+⅓·4³-⅓·1³
=43/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询