高中数学已知函数f(x)+sin(π-wx)coswx+cos²wx(w>0)的最小正周期为π
(1)求w的值(2)将函数f(x)的图像上个点的横坐标缩短到原来的1/2,纵坐标不变,得到函数y=g(x)的图像.求函数g(x)在区间[0,π/16]上的最小值...
(1) 求w的值
(2)将函数f(x)的图像上个点的横坐标缩短到原来的1/2,纵坐标不变,得到函数y=g(x)的图像.求函数g(x)在区间[0,π/16]上的最小值 展开
(2)将函数f(x)的图像上个点的横坐标缩短到原来的1/2,纵坐标不变,得到函数y=g(x)的图像.求函数g(x)在区间[0,π/16]上的最小值 展开
2个回答
展开全部
f(x)=sin(π-wx)coswx+cos²wx=1/2sin2wx+1/2(cos2wx+1)=√2/2sin(2wx+π/4),2w=2π/π=2,则w=1。所以f(x)=√2/2sin(2x+π/4)
由题意知g(x)=√2/2sin(4x+π/4),x属于[0,π/16],4x+π/4属于[π/4, π/2],则g(x)在区间[0,π/16]上的最小值为g(0)=√2/2sin(4*0+π/4)=1/2
由题意知g(x)=√2/2sin(4x+π/4),x属于[0,π/16],4x+π/4属于[π/4, π/2],则g(x)在区间[0,π/16]上的最小值为g(0)=√2/2sin(4*0+π/4)=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询