
1个回答
展开全部
解 :归纳出这些项的 通式 即 为
n^2/(2n-1)(2n+1)=1/4+1/4(1/(2n-1)(2n+1) )=1/4+1/8(1/(2n-1)-1/(2n+1))
所以 S=1^2\1*3+2^2\3*5+3^2\5*7+..........+1000^2\1999*2001
=1/4+1/8(1-1/3)+1/4+1/8(1/3-1/5)+1/4+1/8(1/5-1/7)+……+1/4+1/8(1/1999-1/2001)
=(1/4)*1000+1/8(1-1/2001)
=250+250/2001=250*2002/2001
n^2/(2n-1)(2n+1)=1/4+1/4(1/(2n-1)(2n+1) )=1/4+1/8(1/(2n-1)-1/(2n+1))
所以 S=1^2\1*3+2^2\3*5+3^2\5*7+..........+1000^2\1999*2001
=1/4+1/8(1-1/3)+1/4+1/8(1/3-1/5)+1/4+1/8(1/5-1/7)+……+1/4+1/8(1/1999-1/2001)
=(1/4)*1000+1/8(1-1/2001)
=250+250/2001=250*2002/2001
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询