【求助高等数学】求解第一小问,无穷级数相关,求详解,比较急,谢谢

 我来答
sjh5551
高粉答主

2017-03-17 · 醉心答题,欢迎关注
知道大有可为答主
回答量:3.8万
采纳率:63%
帮助的人:7770万
展开全部
f(x) = a0/2 + ∑<n=1,∞> [ancos(nπx/2) + bnsin(nπx/2)]
a0 = (1/2)∫<-2, 2> (x^2-x)dx (奇函数在对称区间积分为0)
= ∫<0, 2> x^2dx = 8/3.
an = (1/2)∫<-2, 2> (x^2-x)cos(nπx/2)dx
= ∫<0, 2> x^2cos(nπx/2)dx
= [2/(nπ)]∫<0, 2> x^2dsin(nπx/2)
= [2/(nπ)]{[x^2dsin(nπx/2)]<0, 2> - ∫<0, 2> 2xsin(nπx/2)}
= [8/(nπ)^2]∫<0, 2> xdcos(nπx/2)}
= [8/(nπ)^2]{[xcos(nπx/2)]<0, 2> - ∫<0, 2>cos(nπx/2)dx}
= [8/(nπ)^2]{2cosnπ - [2/(nπ)][sin(nπx/2)]<0, 2> }
= [16(-1)^n/(nπ)^2] , n = 1, 2, 3, ...;
bn = (1/2)∫<-2, 2> (x^2-x)sin(nπx/2)dx
= -∫<0, 2> xsin(nπx/2)dx = [2/(nπ)]∫<0, 2> xdcos(nπx/2)
= [2/(nπ)]{[xcos(nπx/2)]<0, 2> - ∫<0, 2> cos(nπx/2)dx}
= [2/(nπ)]{2cosnπ - [2/(nπ)][sin(nπx/2)]<0, 2>}
= 4(-1)^n/(nπ), n = 1, 2, 3, ...
代入第一行展开式即得。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式