求一道高数反常积分的计算题,谢谢了
展开全部
【答案】B
【解析】
原式=∫[0~a]lnx/(x²+a²)·dx+∫[a~+∞]lnx/(x²+a²)·dx
先计算 P=∫[0~a]lnx/(x²+a²)·dx
设x=a·tant,
则dx=a·sec²t·dt
x=0时,t=0
x=a时,t=π/4
P=∫[0~π/4]ln(a·tant)/(a²sec²t)·a·sec²t·dt
=∫[0~π/4]ln(a·tant)/a·dt
=1/a·∫[0~π/4](lna+lntant)·dt
=πlna/(4a)+1/a·∫[0~π/4]lntant·dt
再计算 Q=∫[a~+∞]lnx/(x²+a²)·dx
设x=a·cotu,
则dx=-a·csc²u·du
x=a时,u=π/4
x→+∞时,u→0
Q=∫[π/4~0]ln(a·cotu)/(a²csc²u)·(-a·csc²u·du)
=∫[0~π/4]ln(a·cotu)/a·du
=1/a·∫[0~π/4](lna+lncotu)·du
=πlna/(4a)+1/a·∫[0~π/4]lncotu·du
综上所述,
原式=P+Q
=πlna/(2a)+1/a·∫[0~π/4]lntant·dt+1/a·∫[0~π/4]lncotu·du
=πlna/(2a)+1/a·∫[0~π/4]lntanu·du+1/a·∫[0~π/4]lncotu·du
=πlna/(2a)+1/a·∫[0~π/4](lntanu+lncotu)·du
=πlna/(2a)+1/a·∫[0~π/4]ln(tanu·cotu)·du
=πlna/(2a)+1/a·∫[0~π/4]ln1·du
=πlna/(2a)
【解析】
原式=∫[0~a]lnx/(x²+a²)·dx+∫[a~+∞]lnx/(x²+a²)·dx
先计算 P=∫[0~a]lnx/(x²+a²)·dx
设x=a·tant,
则dx=a·sec²t·dt
x=0时,t=0
x=a时,t=π/4
P=∫[0~π/4]ln(a·tant)/(a²sec²t)·a·sec²t·dt
=∫[0~π/4]ln(a·tant)/a·dt
=1/a·∫[0~π/4](lna+lntant)·dt
=πlna/(4a)+1/a·∫[0~π/4]lntant·dt
再计算 Q=∫[a~+∞]lnx/(x²+a²)·dx
设x=a·cotu,
则dx=-a·csc²u·du
x=a时,u=π/4
x→+∞时,u→0
Q=∫[π/4~0]ln(a·cotu)/(a²csc²u)·(-a·csc²u·du)
=∫[0~π/4]ln(a·cotu)/a·du
=1/a·∫[0~π/4](lna+lncotu)·du
=πlna/(4a)+1/a·∫[0~π/4]lncotu·du
综上所述,
原式=P+Q
=πlna/(2a)+1/a·∫[0~π/4]lntant·dt+1/a·∫[0~π/4]lncotu·du
=πlna/(2a)+1/a·∫[0~π/4]lntanu·du+1/a·∫[0~π/4]lncotu·du
=πlna/(2a)+1/a·∫[0~π/4](lntanu+lncotu)·du
=πlna/(2a)+1/a·∫[0~π/4]ln(tanu·cotu)·du
=πlna/(2a)+1/a·∫[0~π/4]ln1·du
=πlna/(2a)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询