不定积分∫dx是多少
2个回答
2017-10-27
展开全部
1、先求∫e^x*cos2x dx
∫e^x*cos2x dx = (1/2)∫e^x d(sin2x)
= (1/2)(e^x)(sin2x) - (1/2)∫e^x*sin2x dx
= (1/2)(e^x)(sin2x) - (1/2)(-1/2)∫e^x d(cos2x)
= (1/2)(e^x)(sin2x) + (1/4)(e^x)(cos2x) - (1/4)∫e^x*cos2x dx,将最后那个积分移到左边得
(1+1/4)∫e^x*cos2x dx = (1/4)(e^x)(2sin2x+cos2x)
∫e^x*cos2x dx = (1/5)(e^x)(2sin2x+cos2x) + C
∫e^x*sin²x dx
∫e^x*cos2x dx = (1/2)∫e^x d(sin2x)
= (1/2)(e^x)(sin2x) - (1/2)∫e^x*sin2x dx
= (1/2)(e^x)(sin2x) - (1/2)(-1/2)∫e^x d(cos2x)
= (1/2)(e^x)(sin2x) + (1/4)(e^x)(cos2x) - (1/4)∫e^x*cos2x dx,将最后那个积分移到左边得
(1+1/4)∫e^x*cos2x dx = (1/4)(e^x)(2sin2x+cos2x)
∫e^x*cos2x dx = (1/5)(e^x)(2sin2x+cos2x) + C
∫e^x*sin²x dx
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询