导数应用中的变化率和微分应用中的函数增量有什么不同,应用在哪些不同的情景
1个回答
展开全部
不定积分:导数的逆运算 什么样的函数有不定积分定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确 什么样的函数有定积分求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆定积分的几何应用和物理应用高等数学里最重要的数学思想方法:微元法微分和导数的应用:判断函数的单调性和凹凸性微分中值定理,可从几何意义去加深理解泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:一、这些多项式的系数如何求?二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),当余项随着项数的增多趋向于零时,这种近似的精确度就是足够好的多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数最典型的是二元函数极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等导数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询