“归纳推理”和“演绎推理”的区别是什么?
一、归纳推理与演绎推理的主要区别是:
思维进程不同。归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程。演绎推理不是从个别到一般的推理,但也不仅仅是从一般到个别的推理:演绎推理可以从一般到一般,比如从"一切非正义战争都是不得人心的"推出"一切非正义战争都不是得人心的";可以从个别到个别,比如从"罗吉尔·培根不是那个建立新的归纳逻辑学说的培根"推出"那个建立新的归纳逻辑学说的培根不是罗吉尔·培根";可以从个别和一般到个别,比如从"这个物体不导电"和"所有的金属都导电"推出"这个物体不是金属";还可以从个别和一般到一般,比如从"你能够胜任这项工作"和"有志者事竟成或者你不能够胜任这项工作"推出"有志者事竟成"。在这里,应当特别注意的是,归纳推理中的完全归纳推理其思维进程既是从个别到一般,又是必然地得出。
对前提真实性的要求不同。演绎推理不要求前提必须真实,归纳推理则要求前提必须真实。
结论所断定的知识范围不同。演绎推理的结论没有超出前提所断定的知识范围。归纳推理除了完全归纳推理,结论都超出了前提所断定的知识范围。
前提与结论间的联系程度不同。演绎推理的前提与结论间的联系是必然的,也就是说,前提真实,推理形式正确,结论就必然是真的。归纳推理除了完全归纳推理前提与结论间的联系是必然的外,前提和结论间的联系都是或然的,也就是说,前提真实,推理形式也正确,但不能必然推出真实的结论。
二、归纳推理与演绎推理的主要联系是:
演绎推理如果要以一般性知识为前提,(演绎推理未必都要以一般性知识为前提)则通常要依赖归纳推理来提供一般性知识。
归纳推理离不开演绎推理。其一,为了提高归纳推理的可靠程度,需要运用已有的理论知识,对归纳推理的个别性前提进行分析,把握其中的因果性,必然性,这就要用到演绎推理。其二,归纳推理依靠演绎推理来验证自己的结论。例如,俄国化学家门捷列夫通过归纳发现元素周期律,指出,元素的性质随元素原子量的增加而呈周期性变化。后用演绎推理发现,原来测量的一些元素的原子量是错的。于是,他重新安排了它们在周期表中的位置,并预言了一些尚未发现的元素,指出周期表中应留出空白位置给未发现的新元素。
逻辑史上曾出现两个相互对立的派别--全归纳派和全演绎派。全归纳派把归纳说成唯一科学的思维方法,否认演绎在认识中的作用。全演绎派把演绎说成是唯一科学的思维方法,否认归纳的意义。这两种观点都是片面的。正如恩格斯所说:"归纳和演绎,正如分析和综合一样,是必然相互联系着的。不应当牺牲一个而把另一个捧到天上去,应当把每一个都用到该用的地方,而要做到这一点,就只有注意它们的相互联系,它们的相互补充。
归纳推理:所谓归纳推理,就是从个别性知识推出一般性结论的推理。很特殊的情况发生,比如地理环境中发生了什么异常使得兔子必以撞树为快。
归纳推理的数理逻辑通用演算形式为:s1⊆p+s2⊆p+s3⊆p+〈n〉(s⊆p)=∀×(s⊆p)。
演绎推理:就是从一般性的前提出发,通过推导即“演绎”,得出具体陈述或个别结论的过程。关于演绎推理,还存在以下几种定义:
①演绎推理是从一般到特殊的推理;
②它是前提蕴涵结论的推理;
③它是前提和结论之间具有必然联系的推理。
④演绎推理就是前提与结论之间具有充分条件或充分必要条件联系的必然性推理。
演绎推理的逻辑形式对于理性的重要意义在于,它对人的思维保持严密性、一贯性有着不可替代的校正作用。这是因为演绎推理保证推理有效的根据并不在于它的内容,而在于它的形式。演绎推理的最典型、最重要的应用,通常存在于逻辑和数学证明中。