高数定积分题目,如图
展开全部
原式=∫(OB)(x^2+y^2)ds+∫(AB)(x^2+y^2)ds+∫(OA)(x^2+y^2)ds
=∫(0,1)(x^2+0^2)*√(1+0^2)dx+∫(0,1)[x^2+(1-x)^2]*√[1+(-1)^2]dx+∫(0,1)(0^2+y^2)*√(1+0^2)dy
=∫(0,1)x^2dx+√2*∫(0,1)(2x^2-2x+1)dx+∫(0,1)y^2dy
=(1/3)*x^3|(0,1)+√2*[(2/3)*x^3-x^2+x]|(0,1)+(1/3)*y^3|(0,1)
=1/3+√2*(2/3)+1/3
=(2/3)*(1+√2)
=∫(0,1)(x^2+0^2)*√(1+0^2)dx+∫(0,1)[x^2+(1-x)^2]*√[1+(-1)^2]dx+∫(0,1)(0^2+y^2)*√(1+0^2)dy
=∫(0,1)x^2dx+√2*∫(0,1)(2x^2-2x+1)dx+∫(0,1)y^2dy
=(1/3)*x^3|(0,1)+√2*[(2/3)*x^3-x^2+x]|(0,1)+(1/3)*y^3|(0,1)
=1/3+√2*(2/3)+1/3
=(2/3)*(1+√2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询