最基本的三角函数有哪些?
2个回答
展开全部
最常用的三角函数为:
sin0=0 cos0=1 sin30=1/2 cos30=√3/2 sin45=√2/2 cos45= √2/2
sin60=√3/2 cos60=1/2 sin90=1 cos90=0 sin180=0 cos180=-1
tan0=0 tan30=√3/3 tan45=1 tan60=√3 tan180=0
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。
最基本的三角函数公式:
倒数关系:
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系:
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
平方关系:
sin^2(α)+cos^2(α)=1
1+tan^2(α)=sec^2(α)
1+cot^2(α)=csc^2(α)
--
2022-12-05 广告
2022-12-05 广告
图形化编程简单理解为用积木块形式编程,scratch和python也是其中的一种,属于入门级编程,以其简单生动的画面获得无数学生的喜爱,深圳市创客火科技有限公司是一家做教育无人机的公司,旗下有编程无人机,积木无人机及室内外编队,每款飞机含有...
点击进入详情页
本回答由--提供
展开全部
一、常用的三角函数公式有:
1.诱导公式
sin(-a) = - sin(a)
cos(-a) = cos(a)
sin(π/2 - a) = cos(a)
cos(π/2 - a) = sin(a)
sin(π/2 + a) = cos(a)
cos(π/2 + a) = - sin(a)
sin(π - a) = sin(a)
cos(π - a) = - cos(a)
sin(π + a) = - sin(a)
cos(π + a) = - cos(a)
2.两角和与差的三角函数
sin(a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
3.和差化积公式
sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]
sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2]
cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]
cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]
4.积化和差公式
sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]
cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]
sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]
5.二倍角公式
sin(2a) = 2sin(a)cos(b)
cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)
6.半角公式
sin2(a/2) = [1 - cos(a)] / 2
cos2(a/2) = [1 + cos(a)] / 2
tan(a/2) = [1 - cos(a)] /sin(a) = sina / [1 + cos(a)]
7.万能公式
sin(a) = 2tan(a/2) / [1+tan2(a/2)]
cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]
tan(a) = 2tan(a/2) / [1-tan2(a/2)]
二、常用的三角函数数值有:
角度0° 30° 45° 60° 90°
sin 0 1/2 √2/2 √3/2 1
cos 1 √3/2 √2/2 1/2 0
tan 0 √3/3 1 √3 不存在
1.诱导公式
sin(-a) = - sin(a)
cos(-a) = cos(a)
sin(π/2 - a) = cos(a)
cos(π/2 - a) = sin(a)
sin(π/2 + a) = cos(a)
cos(π/2 + a) = - sin(a)
sin(π - a) = sin(a)
cos(π - a) = - cos(a)
sin(π + a) = - sin(a)
cos(π + a) = - cos(a)
2.两角和与差的三角函数
sin(a + b) = sin(a)cos(b) + cos(α)sin(b)
cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
tan(a + b) = [tan(a) + tan(b)] / [1 - tan(a)tan(b)]
tan(a - b) = [tan(a) - tan(b)] / [1 + tan(a)tan(b)]
3.和差化积公式
sin(a) + sin(b) = 2sin[(a + b)/2]cos[(a - b)/2]
sin(a) sin(b) = 2cos[(a + b)/2]sin[(a - b)/2]
cos(a) + cos(b) = 2cos[(a + b)/2]cos[(a - b)/2]
cos(a) - cos(b) = - 2sin[(a + b)/2]sin[(a - b)/2]
4.积化和差公式
sin(a)sin(b) = - 1/2[cos(a + b) - cos(a - b)]
cos(a)cos(b) = 1/2[cos(a + b) + cos(a -b)]
sin(a)cos(b) = 1/2[sin(a + b) + sin(a - b)]
5.二倍角公式
sin(2a) = 2sin(a)cos(b)
cos(2a) = cos2(a) - sin2(a) = 2cos2(a) -1=1 - 2sin2(a)
6.半角公式
sin2(a/2) = [1 - cos(a)] / 2
cos2(a/2) = [1 + cos(a)] / 2
tan(a/2) = [1 - cos(a)] /sin(a) = sina / [1 + cos(a)]
7.万能公式
sin(a) = 2tan(a/2) / [1+tan2(a/2)]
cos(a) = [1-tan2(a/2)] / [1+tan2(a/2)]
tan(a) = 2tan(a/2) / [1-tan2(a/2)]
二、常用的三角函数数值有:
角度0° 30° 45° 60° 90°
sin 0 1/2 √2/2 √3/2 1
cos 1 √3/2 √2/2 1/2 0
tan 0 √3/3 1 √3 不存在
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |