2个回答
展开全部
泰勒公式:
f(x)=f(0)+f'(x)x+o(x)=f'(x)x+o(x)
=f(2)+f'(x)(x-2)+o(x-2)=f'(x)(x-2)+o(x-2)
2f(x)=2f'(x)x-2f'(x)+[o(x)+o(x-2)]
f(x)=f'(x)x-f'(x)+[o(x)+o(x-2)]/2
=f'(x)(x-1)+[o(x)+o(x-2)]/2
∫(0,2)f(x)dx=∫(0,2)[f'(x)(x-1)+[o(x)+o(x-2)]/2]dx
=∫(0,2)[f'(x)(x-1)]dx
=∫(0,1)[f'(x)(x-1)]dx+∫(1,2)[f'(x)(x-1)]dx
x∈(0,1):
2(x-1)≤f'(x)(x-1)≤-2(x-1)
∫(0,1)2(x-1)dx≤∫(0,1)f'(x)(x-1)dx≤∫(0,1)-2(x-1)dx
(x-1)²|(0,1)≤∫(0,1)f'(x)(x-1)dx≤-(x-1)²|(0,1)
-1≤∫(0,1)f'(x)(x-1)dx≤1
x∈(1,2):
-2(x-1)≤f'(x)(x-1)≤2(x-1)
-∫(1,2)2(x-1)dx≤∫(1,2)f'(x)(x-1)dx≤∫(1,2)2(x-1)dx
-(x-1)²|(1,2)≤∫(1,2)f'(x)(x-1)dx≤(x-1)²|(1,2)
-1≤∫(1,2)f'(x)(x-1)dx≤1
两式相加:
-2≤∫(0,2)f'(x)(x-1)dx≤2
f(x)=f(0)+f'(x)x+o(x)=f'(x)x+o(x)
=f(2)+f'(x)(x-2)+o(x-2)=f'(x)(x-2)+o(x-2)
2f(x)=2f'(x)x-2f'(x)+[o(x)+o(x-2)]
f(x)=f'(x)x-f'(x)+[o(x)+o(x-2)]/2
=f'(x)(x-1)+[o(x)+o(x-2)]/2
∫(0,2)f(x)dx=∫(0,2)[f'(x)(x-1)+[o(x)+o(x-2)]/2]dx
=∫(0,2)[f'(x)(x-1)]dx
=∫(0,1)[f'(x)(x-1)]dx+∫(1,2)[f'(x)(x-1)]dx
x∈(0,1):
2(x-1)≤f'(x)(x-1)≤-2(x-1)
∫(0,1)2(x-1)dx≤∫(0,1)f'(x)(x-1)dx≤∫(0,1)-2(x-1)dx
(x-1)²|(0,1)≤∫(0,1)f'(x)(x-1)dx≤-(x-1)²|(0,1)
-1≤∫(0,1)f'(x)(x-1)dx≤1
x∈(1,2):
-2(x-1)≤f'(x)(x-1)≤2(x-1)
-∫(1,2)2(x-1)dx≤∫(1,2)f'(x)(x-1)dx≤∫(1,2)2(x-1)dx
-(x-1)²|(1,2)≤∫(1,2)f'(x)(x-1)dx≤(x-1)²|(1,2)
-1≤∫(1,2)f'(x)(x-1)dx≤1
两式相加:
-2≤∫(0,2)f'(x)(x-1)dx≤2
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询