求极限,这三道题怎么做?6、7、8题,还有第8题有几种解题做法。 5
5个回答
2018-11-06 · 知道合伙人教育行家
关注
展开全部
lim(n->∞) [ (1+2+...+n)/(n+2) -n/2 ]
=lim(n->∞) [ n(n+1)/[2(n+2)] -n/2 ]
=lim(n->∞) [ n(n+1) -n(n+2) ]/[2(n+2)]
=lim(n->∞) -n/[2(n+2)]
=lim(n->∞) -1/[2(1+2/n)]
=-1/2
(7)
let
1/y = 1/(x+1)
lim(x->0) [(x+2)/(x+1)]^x
=lim(x->0) [1 + 1/(x+1)]^x
=lim(y->0) [1 + 1/y]^(y-1)
=lim(y->0) [1 + 1/y]^y
=e
(8)
let
y= x-1
lim(x->1)(3-2x)^[1/(x-1) ]
=lim(y->0) [3-2(y+1) ]^(1/y)
=lim(y->0) (1-2y )^(1/y)
=e^(-2)
=lim(n->∞) [ n(n+1)/[2(n+2)] -n/2 ]
=lim(n->∞) [ n(n+1) -n(n+2) ]/[2(n+2)]
=lim(n->∞) -n/[2(n+2)]
=lim(n->∞) -1/[2(1+2/n)]
=-1/2
(7)
let
1/y = 1/(x+1)
lim(x->0) [(x+2)/(x+1)]^x
=lim(x->0) [1 + 1/(x+1)]^x
=lim(y->0) [1 + 1/y]^(y-1)
=lim(y->0) [1 + 1/y]^y
=e
(8)
let
y= x-1
lim(x->1)(3-2x)^[1/(x-1) ]
=lim(y->0) [3-2(y+1) ]^(1/y)
=lim(y->0) (1-2y )^(1/y)
=e^(-2)
更多追问追答
追问
第七不是1么,
追答
不是 1
lim(x->0) [(x+2)/(x+1)]^x =e
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
8. “1^∞”型,可由公式lim(u^v)=e^lim(u-1)v得原式=e^lim(x→1)(2-2x)/(x-1)=e^-2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询