求下列一阶微分方程满足所给初始条件的特解 5
2020-03-01 · 知道合伙人教育行家
关注
展开全部
令 u=x²+y,则 u'=2x+y',
所以 u' - 2x=2xu,
化为 du / (1+u)=2xdx,
积分得 ln(1+u)=x²+C,
所以 1+u=e^(x²+C),
写成 1+x²+y=e^(x²+C),
代入初值得 C= - 1,
因此所求特解为 1+x²+y=e^(x² - 1)。
所以 u' - 2x=2xu,
化为 du / (1+u)=2xdx,
积分得 ln(1+u)=x²+C,
所以 1+u=e^(x²+C),
写成 1+x²+y=e^(x²+C),
代入初值得 C= - 1,
因此所求特解为 1+x²+y=e^(x² - 1)。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询