高中数学题:用诱导公式解析下面的题。还有用那个口诀解析。口诀是:奇变偶不变,符号看象限。口诀不懂? 30
展开全部
在诱导公式中 ,偶数倍不变、 意思是 ,如果你差的角度是90度也就是二分之派的整数倍,看运算之后是正还是负: sin(90°-α)= cosα sin(90°+α)= cosα cos(90°-α)= sinα cos(90°+α)= - sinα sin(270°-α)= - cosα sin(270°+α)= - cosα cos(270°-α)= - sinα cos(270°+α)= sinα sin(180°-α)= sinα sin(180°+α)= - sinα cos(180°-α)= - cosα cos(180°+α)= - cosα sin(360°-α)= - sinα sin(360°+α)= sinα cos(360°-α)= cosα cos(360°+α)= cosα 如果是90度的奇数倍要变函数名(sin与cos,tan与cot互换),可以用此公式。一般包括奇变偶不变 符号看象限,则将你变量的角视为第一象限的角。 至于符号,这句口诀
展开全部
诱导公式kπ/2+α
奇变偶不变:如果k是奇数,那么sin变成cos,以此类推;如果k是偶数,那么sin仍为sin,以此类推。
符号看象限:假定α是第一象限角,根据kπ/2+α所在象限的三角函数的符号确定诱导公式的符号。
例如sin(3π/2+α),k=3是奇数所以变为cos,假定α是第一象限角则3π/2+α是第四象限角,第四象限角正弦值为负,所以符号是"-",所以sin(3π/2+α)=-cosα
又如tan(-π+α),k=-2是偶数所以仍是tan,假定α是第一象限角则-π+α是第三象限角,第三象限角正切值为正,所以符号是"+",所以tan(-π+α)=tanα
奇变偶不变:如果k是奇数,那么sin变成cos,以此类推;如果k是偶数,那么sin仍为sin,以此类推。
符号看象限:假定α是第一象限角,根据kπ/2+α所在象限的三角函数的符号确定诱导公式的符号。
例如sin(3π/2+α),k=3是奇数所以变为cos,假定α是第一象限角则3π/2+α是第四象限角,第四象限角正弦值为负,所以符号是"-",所以sin(3π/2+α)=-cosα
又如tan(-π+α),k=-2是偶数所以仍是tan,假定α是第一象限角则-π+α是第三象限角,第三象限角正切值为正,所以符号是"+",所以tan(-π+α)=tanα
更多追问追答
追问
我让你解题
追答
可以啊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解释:奇变偶不变,符号看象限。
对于kπ/2±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)
第一象限内任何一个角的三角函数值都是“+”;
第二象限内只有正弦、余割是“+”,其余全部是“-”;
第三象限内只有正切、余切函数是“+”,弦函数是“-”;
第四象限内只有余弦、正割是“+”,其余全部是“-”。
对于kπ/2±α(k∈Z)的三角函数值,
①当k是偶数时,得到α的同名函数值,即函数名不改变;
②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)
第一象限内任何一个角的三角函数值都是“+”;
第二象限内只有正弦、余割是“+”,其余全部是“-”;
第三象限内只有正切、余切函数是“+”,弦函数是“-”;
第四象限内只有余弦、正割是“+”,其余全部是“-”。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询