求:韦达定理的详细推论。这,是如何得到x1+x2=-b/a x1x2=c/a
3个回答
展开全部
ax^2+bx+c=0
a(x^2+bx/a)=-c
a(x^2+bx/a+b^2/4a^2)=b^2/4a-c
a(x+b/2a)^2=(b^2-4ac)/4a
(x+b/2a)^2=(b^2-4ac)/4a^2
x+b/2a=±√(b^2-4ac)/2a
x=[-b±√(b^2-4ac)]/2a
x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a
x1+x2=[-b+√(b^2-4ac)]/2a +[-b-√(b^2-4ac)]/2a
=-2b/2a=-b/a
x1*x2=[-b+√(b^2-4ac)]/2a *[-b-√(b^2-4ac)]/2a
= [b^2-(b^2-4ac)]/4a^2
=(b^2-b^2+4ac)/4a^2
=c/a
a(x^2+bx/a)=-c
a(x^2+bx/a+b^2/4a^2)=b^2/4a-c
a(x+b/2a)^2=(b^2-4ac)/4a
(x+b/2a)^2=(b^2-4ac)/4a^2
x+b/2a=±√(b^2-4ac)/2a
x=[-b±√(b^2-4ac)]/2a
x1=[-b+√(b^2-4ac)]/2a,x2=[-b-√(b^2-4ac)]/2a
x1+x2=[-b+√(b^2-4ac)]/2a +[-b-√(b^2-4ac)]/2a
=-2b/2a=-b/a
x1*x2=[-b+√(b^2-4ac)]/2a *[-b-√(b^2-4ac)]/2a
= [b^2-(b^2-4ac)]/4a^2
=(b^2-b^2+4ac)/4a^2
=c/a
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询