两道高数题 关于常微分方程的 求解答
2个回答
展开全部
两道高数题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
[1+e^(-x/y)]dx/dy=-(1-x/y) (1)
令x/y=p,则x=py;dx/dy=dp/dy*y+p
带入(1)式可得
[1+e^(-p)](ydp/dy+p)=-(1-p)=p-1
化简得 [1+e^p]*ydp/dy=-[e^p+p]
即有 [1+e^p]/[p+e^p]*dp=-dy/y
即 1/[p+e^p]*d(p+e^p)=-dy/y
积分可得 ln(p+e^p)=-lny+C=ln(C/y)
即 p+e^p=C/y
代换回p=x/y,可得
x/y+e^(x/y)=C/y
令x/y=p,则x=py;dx/dy=dp/dy*y+p
带入(1)式可得
[1+e^(-p)](ydp/dy+p)=-(1-p)=p-1
化简得 [1+e^p]*ydp/dy=-[e^p+p]
即有 [1+e^p]/[p+e^p]*dp=-dy/y
即 1/[p+e^p]*d(p+e^p)=-dy/y
积分可得 ln(p+e^p)=-lny+C=ln(C/y)
即 p+e^p=C/y
代换回p=x/y,可得
x/y+e^(x/y)=C/y
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询