两道高数题 关于常微分方程的 求解答

 我来答
shaoshigang425
2018-12-13 · 超过29用户采纳过TA的回答
知道答主
回答量:143
采纳率:41%
帮助的人:53.6万
展开全部
两道高数题
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
阳光的ll145
2018-12-13 · 超过33用户采纳过TA的回答
知道答主
回答量:76
采纳率:68%
帮助的人:15.4万
展开全部
[1+e^(-x/y)]dx/dy=-(1-x/y) (1)
令x/y=p,则x=py;dx/dy=dp/dy*y+p
带入(1)式可得
[1+e^(-p)](ydp/dy+p)=-(1-p)=p-1
化简得 [1+e^p]*ydp/dy=-[e^p+p]
即有 [1+e^p]/[p+e^p]*dp=-dy/y
即 1/[p+e^p]*d(p+e^p)=-dy/y
积分可得 ln(p+e^p)=-lny+C=ln(C/y)
即 p+e^p=C/y
代换回p=x/y,可得
x/y+e^(x/y)=C/y
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式