一道初三数学题(要第二问的②的过程)急急急急急急急急急急急急

(河南省)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点.(1)直接写出点A的坐标,并求... (河南省)如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax 2+bx过A、C两点.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)动点P从点A出发,沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E.
① 过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长?
② 连接EQ,在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.
展开
 我来答
暗香沁人
高赞答主

2011-01-30 · 点赞后记得关注哦
知道大有可为答主
回答量:1万
采纳率:83%
帮助的人:6961万
展开全部
解:
(1)易得A点为(4,8)
由于抛物线过(4,8)(8,0),分别代入抛物线得a=-1/2,b=4
所以抛物线为y=-1/2x+4x
(2)由题知AE函数为y=-2x+16,P点坐标为(4,8-t)
而AE纵坐标与P点相同,所以有8-t=-2x+16,得x=(t+8)/2
即E点为((t+8)/2,8-t)
而E与G共横坐标,所以有y=-1/2((t+8)/2)+4(t+8)/2=-1/8t+8
即G为((t+8)/2,-1/8t+8)
所以EG=yG-yE=-1/8t+8-(8-t)=-1/8t+t
所以有最大值当ymax=2时,t=4
(3)E点为((t+8)/2,8-t),Q点坐标为(8,t),C点坐标为(8,0)
用向量法得:向量CQ=(0,t),向量EC=(-t/2+4,t-8),向量EQ=(-t/2+4,2t-8)
所以|CQ|=t,
当|EC|=|EQ|时,即(-t/2+4)+(t-8)=(-t/2+4)+(2t-8)
即t-8=2t-8,所以t无解,即|EC|≠|EQ|
当|CQ|=|EC|时,即(-t/2+4)+(t-8)=t
解得t=40±16根号5,因为0<t<8所以t=40-16根号5
当|CQ|=|EQ|时,即t=(-t/2+4)+(2t-8)
(13t-40)(t-8)=0因为t≠8所以13t-40=0所以t=40/13
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式