选择题:已知定义在R上的奇函数f(x),满足f(x-4)= - f(x),且在[0,2]上是增函数,则

 我来答
古精休尧
2019-05-25 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.1万
采纳率:32%
帮助的人:793万
展开全部
∵f(x-4)=
-
f(x),∴f(x)=-f(x-4)
,
∴f(x+8)
=-f[(x+8)-4]
=-f(x+4)
=f[(x+4)-4]
=f(x)
∴函数的周期为8.
∴f(-25)=f(-24-1)=f(-1)
f(11)=f(8+3)=f(3)=-f(3-4)=-f(-1)=f(1)
f(80)=f(0)
∵函数是奇函数,在[0,2]上递增,
∴在[-2,2]上递增。
又-1<0<1
故f(-1)<f(0)<f(1)
选D
D的内容是不是你写错了啊
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式