如何计算三重积分∫∫∫dV

 我来答
无夏门永昌
2019-11-04 · TA获得超过3944个赞
知道大有可为答主
回答量:3191
采纳率:31%
帮助的人:456万
展开全部
先换元再积分,并使用对称性。令x=u+a,y=v+b,z=w+c,区域变成球体:u^2+v^2+w^2≤a^2。
积分=∫∫∫[(u^2+v^2+w^2)+(2au+2bv+2cw)+(a^2+b^2+c^2)]dV,其中∫∫∫[(u^2+v^2+w^2)dV用球面坐标,∫∫∫(2au+2bv+2cw)dV用对称性是0,∫∫∫(a^2+b^2+c^2)]dV直接就有结果了。
苑聪澹台海儿
2019-05-21 · TA获得超过3629个赞
知道大有可为答主
回答量:3053
采纳率:25%
帮助的人:386万
展开全部
令x=rsinψcosθ,y=rsinψsinθ,z=rcosψ
那么
∫∫∫√(x²+y²+z²)dxdydz
=∫∫∫(r*r²sinψ)drdψdθ
=∫∫∫(r³sinψ)drdψdθ
积分区域:
由x²+y²+z²≤x得:0≤r≤sinψcosθ
0≤ψ≤π,-π/2≤θ≤π/2
∫∫∫(r³sinψ)drdψdθ
=∫dθ∫dψ∫(r³sinψ)dr
=(1/4)*∫(cosθ)^4dθ*∫(sinψ)^5dψ鸡甫惯晃甙浩轨彤憨廓
在0≤ψ≤π上∫(sinψ)^5dψ,相当于0≤ψ≤π/2上2∫(sinψ)^5dψ=2*(4/5)*(2/3)=16/15
在-π/2≤θ≤π/2上∫(cosθ)^4dθ,相当于0≤ψ≤π/2上2∫(cosθ)^4dθ=2*(3/4)*(1/2)*(π/2)=3π/8
故,原式=(1/4)*∫(cosθ)^4dθ*∫(sinψ)^5dψ=(1/4)*(3π/8)*(16/15)=π/10
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式