设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2 求:(1)设bn=An+1-2An,证明数列{bn}是等比数列(2)求数

 我来答
鄢兰英夔寅
2019-06-20 · TA获得超过3.8万个赞
知道大有可为答主
回答量:1.4万
采纳率:27%
帮助的人:782万
展开全部
解:
(1)
由a1=1,及S(n+1)=4an+2
得:a1+a2=4a1+2,a2=3a1+2=5
∴b1=a2-2a1=3
由S(n+1)=4an+2

则当n

2时,有Sn=4a(n-1)+2

②-①得:
a(n+1)=4an-4a(n-1)
∴a(n+1)-2an=2[an-2a(n-1)]
又bn=a(n+1)-2an
∴bn=2b(n-1)
∴{bn}是以b1=3为首项、以2为公比的等比数列
(2)
由(1)可得:
bn=a(n+1)-2an=3•2^(n-1)
∴[a(n+1)]/[2^(n+1)]-(an)/(2^n)=3/4
∴数列{(an)/(2^n)}是首项为1/2,公差为3/4的等差数列
∴(an)/(2^n)=1/2+(n-1)3/4=3/4n-1/4
即an=(3n-1)•2^(n-2)
(n∈N*)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式