求微分方程的通解,要全过程
2个回答
展开全部
例子:
y''+y'=1
齐次方程y''+y'=0的特征方程为a^2+a=0
解得:a=0或者a=-1
齐次方程通解y=c1*e^(-x)+c2
设y''+y'=1的特解为y*=ax
y*'=a
y''=0
代入原方程得:
0+a=1
a=1
所以:y*=x
所以:微分方程的通解为y=c1/e^x+x+c2
y''+y'=1
齐次方程y''+y'=0的特征方程为a^2+a=0
解得:a=0或者a=-1
齐次方程通解y=c1*e^(-x)+c2
设y''+y'=1的特解为y*=ax
y*'=a
y''=0
代入原方程得:
0+a=1
a=1
所以:y*=x
所以:微分方程的通解为y=c1/e^x+x+c2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询