2个回答
展开全部
8.M=∫∫∫Ω (x²+y²+z²)dv
=∫∫(x²+y²≤1) (x²+y²+z²)dxdydz
换成柱坐标x=rcosθ,y=rsinθ,z=z,θ∈[0,2π],r∈[0,1],z∈[0,r]
dxdydz=rdrdθdz
=∫(0,2π) dθ∫(0,1) rdr∫(0,r) (r²+z²)dz
=2π∫(0,1) 4/3 r^4dr
=2π×4/15
=8π/15
9.∫∫(x²+y²≤1) (1+xy)dxdydz
换成柱坐标x=rcosθ,y=rsinθ,z=z,θ∈[0,2π],r∈[0,1],z∈[0,2]
dxdydz=rdrdθdz
=∫(0,2π) dθ∫(0,1) (2r+r³sin2θ)dr
=∫(0,2π) (1+1/4 sin2θ)dθ
=θ|(0,2π)
=2π
10.∫∫∫Ω (x²+y²)dxdydz
换成球坐标x=rcosθsinφ,y=rsinθsinφ,z=rcosφ,θ∈[0,2π],φ∈[0,π/4],r∈[0,2∨2]
dxdydz=r²sinφdθdφdr
=∫(0,2π) dθ∫(0,π/4) dφ∫(0,2∨2) r^4sin³φdr
=2π×128∨2/5 ∫(0,π/4) -sin²φdcosφ
=256∨2π/5 ∫(0,π/4) (cos²φ-1)dcosφ
=256∨2π/5 (1/3 cos³φ-cosφ)|(0,π/4)
=256∨2π/5 (1/3 ×∨2/4-∨2/2-1/3+1)
=64(8∨2-10)π/15
=∫∫(x²+y²≤1) (x²+y²+z²)dxdydz
换成柱坐标x=rcosθ,y=rsinθ,z=z,θ∈[0,2π],r∈[0,1],z∈[0,r]
dxdydz=rdrdθdz
=∫(0,2π) dθ∫(0,1) rdr∫(0,r) (r²+z²)dz
=2π∫(0,1) 4/3 r^4dr
=2π×4/15
=8π/15
9.∫∫(x²+y²≤1) (1+xy)dxdydz
换成柱坐标x=rcosθ,y=rsinθ,z=z,θ∈[0,2π],r∈[0,1],z∈[0,2]
dxdydz=rdrdθdz
=∫(0,2π) dθ∫(0,1) (2r+r³sin2θ)dr
=∫(0,2π) (1+1/4 sin2θ)dθ
=θ|(0,2π)
=2π
10.∫∫∫Ω (x²+y²)dxdydz
换成球坐标x=rcosθsinφ,y=rsinθsinφ,z=rcosφ,θ∈[0,2π],φ∈[0,π/4],r∈[0,2∨2]
dxdydz=r²sinφdθdφdr
=∫(0,2π) dθ∫(0,π/4) dφ∫(0,2∨2) r^4sin³φdr
=2π×128∨2/5 ∫(0,π/4) -sin²φdcosφ
=256∨2π/5 ∫(0,π/4) (cos²φ-1)dcosφ
=256∨2π/5 (1/3 cos³φ-cosφ)|(0,π/4)
=256∨2π/5 (1/3 ×∨2/4-∨2/2-1/3+1)
=64(8∨2-10)π/15
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询