锐角三角形中,b/a+a/b=6cosC,求 tanC/tanA+tanC/tanB的值

 我来答
茹翊神谕者

2023-10-21 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1557万
展开全部

简单分析一下,答案如图所示

浦恨真汝婵
2020-02-02 · TA获得超过3.1万个赞
知道大有可为答主
回答量:1.1万
采纳率:26%
帮助的人:773万
展开全部
解:因为b/a+a/b=6cosc,所以cosc=(a^2+b^2)/6ab,而cosc=(a^2+b^2-c^2)/2ab,所以3c^2=2(a^2+b^2)
tanc/tana+tanc/tanb=c/a(cosa/cosc)+c/b(cosb/cosc)
将cosa和cosb用余弦公式展开,并将上面的两个式子代入即得,答案为4
这里还用了sina/sinc=a/c,sinb/sinc=b/c如果满意,谢谢采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式