将4名新来的同学分配到A.B.C三个班级,每个班至少安排1名同学,
将4名新来的同学分配到A.B.C三个班级,每个班至少安排1名同学,其中甲同学不能分配到A班,那么不同的分配方案有多少种怎么做,,要过程...
将4名新来的同学分配到A.B.C三个班级,每个班至少安排1名同学,其中甲同学不能分配到A班,那么不同的分配方案有多少种 怎么做,,要过程
展开
1个回答
展开全部
分析:根据题意,首先分析甲,易得甲可以放在B、C班,有2种情况,再分两种情况讨论其他三名同学,即①A、B、C每班一人,②、B、C中一个班1人,另一个班2人,分别求出其情况数目,由加法原理可得其他三人的情况数目,由分类计数原理计算可得答案.
解答:甲同学不能分配到A班,则甲可以放在B、C班,有A21种方法,
另外三个同学有2种情况,
①、三人中,有1个人与A共同分配一个班,即A、B、C每班一人,即在三个班级全排列A33,
②三人中,没有人与甲共同参加一个班,这三人都被分配到甲没有分配的2个班,
则这三中一个班1人,另一个班2人,可以从3人中选2个为一组,与另一人对应2个班,进行全排列,有C32A22种情况,
另外三个同学有A33+C32A22种安排方法,
∴不同的分配方案有A21(A33+C32A22)=24,
故答案为24.
解答:甲同学不能分配到A班,则甲可以放在B、C班,有A21种方法,
另外三个同学有2种情况,
①、三人中,有1个人与A共同分配一个班,即A、B、C每班一人,即在三个班级全排列A33,
②三人中,没有人与甲共同参加一个班,这三人都被分配到甲没有分配的2个班,
则这三中一个班1人,另一个班2人,可以从3人中选2个为一组,与另一人对应2个班,进行全排列,有C32A22种情况,
另外三个同学有A33+C32A22种安排方法,
∴不同的分配方案有A21(A33+C32A22)=24,
故答案为24.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询