差分方程特解怎么求啊

 我来答
理财小能手康娃

2020-10-05 · 当时飞去逐彩云,化作今日京华春
理财小能手康娃
采纳数:2407 获赞数:9814

向TA提问 私信TA
展开全部
包含未知函数的差分及自变数的方程。在求微分方程*的数值解时,常把其中的微分用相应的差分来近似,所导出的方程就是差分方程。通过解差分方程来求微分方程的近似解,是连续问题离散化*的一个例子。[1]

中文名
差分方程在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。

所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。

意义性质
意义
数值分析中首先遇到的问题是如何把微分方程化成相应的差分方程 ,使得差分方程的解能最好地近似表示原来的微分方程的解 ,其次才是进行计算。

比如 dy+y*dx=0,y(0)=1 是一个微分方程, x取值[0,1]

(注:解为y(x)=e^(-x));

要实现微分方程的离散化,可以把x的区间分割为许多小区间 [0,1/n],[1/n,2/n],...[(n-1)/n,1]

差分方程
这样上述微分方程可以离散化为:y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0, k=0,1,2,...,n-1 (n 个离散方程组)

利用y(0)=1的条件,以及上面的差分方程,就可以计算出 y(k/n) 的近似值了。

性质
性质1 Δk(xn+yn)=Δkxn+Δkyn

性质2 Δk(cxn)=cΔkxn

性质3 Δkxn=∑(-1)jCjkXn+k-j

性质4 数列的通项为n的无限次可导函数,对任意k>=1,存在η,有 Δkxn=f(k)(η)

差分方程
概念
差分方程差分方程差分方程5张
差分方程
设{ut,t=0,±1…}为实序列,若满足如下关系式ut-ᵠ1ut-1-…-ᵠput-p=h(t),其中ᵠ1,ᵠ2…,ᵠp为实数,h(t)为t的已知实函数,则称上式为{ut}所满足的线性差分方程。

如将上式中的确定性函数ut,h (t)代之以统计特性已知的随机序列,于是便得到线性随机差分方程。在时间序列分析中并不讨论这样广泛的模型,只涉及一种特殊的线性随机差分方程:

xt-ᵠ1xt-1-…-ᵠpxt-p=εt-θ1εt-1-…-θqεt-g

其中ᵠ1, …,ᵠp, 及θ1, …,θg为实数, {xt}是零均值平稳序列,{εt}是平稳白噪声序列,且当s>t时Eεsxt=0上述特定的线性随机差分方程就是时间序列分析中的ARMA (p,g) 模型。[2]

形如yt+n+a1(t)yt+n-1+a2(t)yt+n-2+…+an-1(t)yt+1+an(t)yt=f(t)的差分方程,称为n阶非齐次线性差分方程。其中a1(t),a2(t),…,an-1(t),an(t)和f(t)都是t的已知函数,且an(t)≠0,f(t)≠0。

而形如yt+n+a1(t)yt+n-1+…+an-1(t)yt+1+an(t)yt=0的差分方程,称为n阶齐次线性差分方程。其中ai(t)(i=1,2,…,n)为t的已知函数,且an(t)≠0。

如果ai(t)=ai(i=1,2,…,n)均为常数(an≠0),则有

yt+n+a1yt+n-1+a2yt+n-2+…+an-1yt+1+anyt=f(t),

yt+n+a1yt+n-1+a2yt+n-2+…+an-1yt+1+anyt=0。

分别称为n阶常系数非齐次线性差分方程和n阶常系数齐次线性差分方程。

定理
定理1(齐次线性差分方程解的叠加原理

若y1(t),y2(t),…,ym(t)是齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2+…+an-1yt+1+anyt=0的m个特解(m≥2),则其线性组合y(t)=A1y1(t)+A2y2(t)+…+Amym(t)也是方程 的解,其中A1,A2,…,Am为任意常数。

定理2n阶齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0一定存在n个线性无关的特解。

定理3(齐次线性差分方程通解结构定理)

如果y1(t),y2(t),…,yn(t)是齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0的n个线性无关的特解,则方程 的通解为:yA(t)=A1y1(t)+A2y2(t)+…+Anyn(t),其中A1,A2,…,An为n个任意(独立)常数。

定理4(非齐次线性差分方程通解结构定理)

如果 (t)是非齐次线性方程yt+n+a1(t)yt+n-1+a2(t)yt+n-2 +…+an-1(t)yt+1+an(t)yt=f(t)的一个特解,yA(t)是其对应的齐次线性方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0的通解,那么,非齐次线性差分方程的通解为:y(t)=yA(t)+ (t),即y(t)=A1y1(t)+A2y2(t)+…+Anyn(t)+ (t),这里A1,A2,…,An为n个任意(独立)常数。

通解特解
齐次差分方程的通解

将方程yt+1+ayt=0改写为:yt+1=-ayt,t=0,1,2,…。假定在初始时刻(即t=0)时,函数yt取任意值A,那么由上式逐次迭代,算得

差分方程
y1=-ay0=-aA,y2=-ay1=(-a)2A,………………方程的通解为yt =A(-a)t ,t=0,1,2,…

如果给定初始条件t=0时yt=y0,则A=y0,此时特解为:yt =y0(-a)t。

差分方程
非齐次方程的通解与特解
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式