差分方程特解怎么求啊
展开全部
包含未知函数的差分及自变数的方程。在求微分方程*的数值解时,常把其中的微分用相应的差分来近似,所导出的方程就是差分方程。通过解差分方程来求微分方程的近似解,是连续问题离散化*的一个例子。[1]
中文名
差分方程在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。
所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。
意义性质
意义
在数值分析中首先遇到的问题是如何把微分方程化成相应的差分方程 ,使得差分方程的解能最好地近似表示原来的微分方程的解 ,其次才是进行计算。
比如 dy+y*dx=0,y(0)=1 是一个微分方程, x取值[0,1]
(注:解为y(x)=e^(-x));
要实现微分方程的离散化,可以把x的区间分割为许多小区间 [0,1/n],[1/n,2/n],...[(n-1)/n,1]
差分方程
这样上述微分方程可以离散化为:y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0, k=0,1,2,...,n-1 (n 个离散方程组)
利用y(0)=1的条件,以及上面的差分方程,就可以计算出 y(k/n) 的近似值了。
性质
性质1 Δk(xn+yn)=Δkxn+Δkyn
性质2 Δk(cxn)=cΔkxn
性质3 Δkxn=∑(-1)jCjkXn+k-j
性质4 数列的通项为n的无限次可导函数,对任意k>=1,存在η,有 Δkxn=f(k)(η)
差分方程
概念
差分方程差分方程差分方程5张
差分方程
设{ut,t=0,±1…}为实序列,若满足如下关系式ut-ᵠ1ut-1-…-ᵠput-p=h(t),其中ᵠ1,ᵠ2…,ᵠp为实数,h(t)为t的已知实函数,则称上式为{ut}所满足的线性差分方程。
如将上式中的确定性函数ut,h (t)代之以统计特性已知的随机序列,于是便得到线性随机差分方程。在时间序列分析中并不讨论这样广泛的模型,只涉及一种特殊的线性随机差分方程:
xt-ᵠ1xt-1-…-ᵠpxt-p=εt-θ1εt-1-…-θqεt-g
其中ᵠ1, …,ᵠp, 及θ1, …,θg为实数, {xt}是零均值平稳序列,{εt}是平稳白噪声序列,且当s>t时Eεsxt=0上述特定的线性随机差分方程就是时间序列分析中的ARMA (p,g) 模型。[2]
形如yt+n+a1(t)yt+n-1+a2(t)yt+n-2+…+an-1(t)yt+1+an(t)yt=f(t)的差分方程,称为n阶非齐次线性差分方程。其中a1(t),a2(t),…,an-1(t),an(t)和f(t)都是t的已知函数,且an(t)≠0,f(t)≠0。
而形如yt+n+a1(t)yt+n-1+…+an-1(t)yt+1+an(t)yt=0的差分方程,称为n阶齐次线性差分方程。其中ai(t)(i=1,2,…,n)为t的已知函数,且an(t)≠0。
如果ai(t)=ai(i=1,2,…,n)均为常数(an≠0),则有
yt+n+a1yt+n-1+a2yt+n-2+…+an-1yt+1+anyt=f(t),
yt+n+a1yt+n-1+a2yt+n-2+…+an-1yt+1+anyt=0。
分别称为n阶常系数非齐次线性差分方程和n阶常系数齐次线性差分方程。
定理
定理1(齐次线性差分方程解的叠加原理)
若y1(t),y2(t),…,ym(t)是齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2+…+an-1yt+1+anyt=0的m个特解(m≥2),则其线性组合y(t)=A1y1(t)+A2y2(t)+…+Amym(t)也是方程 的解,其中A1,A2,…,Am为任意常数。
定理2n阶齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0一定存在n个线性无关的特解。
定理3(齐次线性差分方程通解结构定理)
如果y1(t),y2(t),…,yn(t)是齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0的n个线性无关的特解,则方程 的通解为:yA(t)=A1y1(t)+A2y2(t)+…+Anyn(t),其中A1,A2,…,An为n个任意(独立)常数。
定理4(非齐次线性差分方程通解结构定理)
如果 (t)是非齐次线性方程yt+n+a1(t)yt+n-1+a2(t)yt+n-2 +…+an-1(t)yt+1+an(t)yt=f(t)的一个特解,yA(t)是其对应的齐次线性方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0的通解,那么,非齐次线性差分方程的通解为:y(t)=yA(t)+ (t),即y(t)=A1y1(t)+A2y2(t)+…+Anyn(t)+ (t),这里A1,A2,…,An为n个任意(独立)常数。
通解特解
齐次差分方程的通解
将方程yt+1+ayt=0改写为:yt+1=-ayt,t=0,1,2,…。假定在初始时刻(即t=0)时,函数yt取任意值A,那么由上式逐次迭代,算得
差分方程
y1=-ay0=-aA,y2=-ay1=(-a)2A,………………方程的通解为yt =A(-a)t ,t=0,1,2,…
如果给定初始条件t=0时yt=y0,则A=y0,此时特解为:yt =y0(-a)t。
差分方程
非齐次方程的通解与特解
中文名
差分方程在数学上,递推关系(recurrence relation),也就是差分方程(difference equation),是一种递推地定义一个序列的方程式:序列的每一项目是定义为前一项的函数。某些简单定义的递推关系式可能会表现出非常复杂的(混沌的)性质,他们属于数学中的非线性分析领域。
所谓解一个递推关系式,也就是求其解析解,即关于n的非递归函数。
意义性质
意义
在数值分析中首先遇到的问题是如何把微分方程化成相应的差分方程 ,使得差分方程的解能最好地近似表示原来的微分方程的解 ,其次才是进行计算。
比如 dy+y*dx=0,y(0)=1 是一个微分方程, x取值[0,1]
(注:解为y(x)=e^(-x));
要实现微分方程的离散化,可以把x的区间分割为许多小区间 [0,1/n],[1/n,2/n],...[(n-1)/n,1]
差分方程
这样上述微分方程可以离散化为:y((k+1)/n)-y(k/n)+y(k/n)*(1/n)=0, k=0,1,2,...,n-1 (n 个离散方程组)
利用y(0)=1的条件,以及上面的差分方程,就可以计算出 y(k/n) 的近似值了。
性质
性质1 Δk(xn+yn)=Δkxn+Δkyn
性质2 Δk(cxn)=cΔkxn
性质3 Δkxn=∑(-1)jCjkXn+k-j
性质4 数列的通项为n的无限次可导函数,对任意k>=1,存在η,有 Δkxn=f(k)(η)
差分方程
概念
差分方程差分方程差分方程5张
差分方程
设{ut,t=0,±1…}为实序列,若满足如下关系式ut-ᵠ1ut-1-…-ᵠput-p=h(t),其中ᵠ1,ᵠ2…,ᵠp为实数,h(t)为t的已知实函数,则称上式为{ut}所满足的线性差分方程。
如将上式中的确定性函数ut,h (t)代之以统计特性已知的随机序列,于是便得到线性随机差分方程。在时间序列分析中并不讨论这样广泛的模型,只涉及一种特殊的线性随机差分方程:
xt-ᵠ1xt-1-…-ᵠpxt-p=εt-θ1εt-1-…-θqεt-g
其中ᵠ1, …,ᵠp, 及θ1, …,θg为实数, {xt}是零均值平稳序列,{εt}是平稳白噪声序列,且当s>t时Eεsxt=0上述特定的线性随机差分方程就是时间序列分析中的ARMA (p,g) 模型。[2]
形如yt+n+a1(t)yt+n-1+a2(t)yt+n-2+…+an-1(t)yt+1+an(t)yt=f(t)的差分方程,称为n阶非齐次线性差分方程。其中a1(t),a2(t),…,an-1(t),an(t)和f(t)都是t的已知函数,且an(t)≠0,f(t)≠0。
而形如yt+n+a1(t)yt+n-1+…+an-1(t)yt+1+an(t)yt=0的差分方程,称为n阶齐次线性差分方程。其中ai(t)(i=1,2,…,n)为t的已知函数,且an(t)≠0。
如果ai(t)=ai(i=1,2,…,n)均为常数(an≠0),则有
yt+n+a1yt+n-1+a2yt+n-2+…+an-1yt+1+anyt=f(t),
yt+n+a1yt+n-1+a2yt+n-2+…+an-1yt+1+anyt=0。
分别称为n阶常系数非齐次线性差分方程和n阶常系数齐次线性差分方程。
定理
定理1(齐次线性差分方程解的叠加原理)
若y1(t),y2(t),…,ym(t)是齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2+…+an-1yt+1+anyt=0的m个特解(m≥2),则其线性组合y(t)=A1y1(t)+A2y2(t)+…+Amym(t)也是方程 的解,其中A1,A2,…,Am为任意常数。
定理2n阶齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0一定存在n个线性无关的特解。
定理3(齐次线性差分方程通解结构定理)
如果y1(t),y2(t),…,yn(t)是齐次线性差分方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0的n个线性无关的特解,则方程 的通解为:yA(t)=A1y1(t)+A2y2(t)+…+Anyn(t),其中A1,A2,…,An为n个任意(独立)常数。
定理4(非齐次线性差分方程通解结构定理)
如果 (t)是非齐次线性方程yt+n+a1(t)yt+n-1+a2(t)yt+n-2 +…+an-1(t)yt+1+an(t)yt=f(t)的一个特解,yA(t)是其对应的齐次线性方程yt+n+a1yt+n-1 +a2yt+n-2 +…+an-1yt+1+anyt=0的通解,那么,非齐次线性差分方程的通解为:y(t)=yA(t)+ (t),即y(t)=A1y1(t)+A2y2(t)+…+Anyn(t)+ (t),这里A1,A2,…,An为n个任意(独立)常数。
通解特解
齐次差分方程的通解
将方程yt+1+ayt=0改写为:yt+1=-ayt,t=0,1,2,…。假定在初始时刻(即t=0)时,函数yt取任意值A,那么由上式逐次迭代,算得
差分方程
y1=-ay0=-aA,y2=-ay1=(-a)2A,………………方程的通解为yt =A(-a)t ,t=0,1,2,…
如果给定初始条件t=0时yt=y0,则A=y0,此时特解为:yt =y0(-a)t。
差分方程
非齐次方程的通解与特解
夕资工业设备(上海)
2024-12-11 广告
2024-12-11 广告
夕资工业设备(上海)有限公司的工作人员指出,读数头315420-14是一种高精度的传感器,用于测量各种物理量,如压力、温度、位移等。该读数头具有高稳定性、高精度和高可靠性等特点,广泛应用于工业自动化、智能制造、能源等领域。读数头315420...
点击进入详情页
本回答由夕资工业设备(上海)提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询