求函数y=(x²-3x+3)/(x-2) (x>2)的最小值,请不要跳步,谢谢
展开全部
求函数y=(x²-3x+3)/(x-2)
(x>2)的最小值
y=(x²-3x+3)/(x-2)
=[x(x-2)-x+3]/(x-2)
=[x(x-2)-(x-2)+1]/(x-2)
=x(x-2)/(x-2)-(x-2)/(x-2)+1/(x-2)
=(x-1)+1/(x-2)
=(x-2)+1/(x-2)+1
因为x>2,
x-2>0
所以式中的(x-2)+1/(x-2)≥2,
即
y=(x-2)+1/(x-2)+1有最小值
2+1=3
(x>2)的最小值
y=(x²-3x+3)/(x-2)
=[x(x-2)-x+3]/(x-2)
=[x(x-2)-(x-2)+1]/(x-2)
=x(x-2)/(x-2)-(x-2)/(x-2)+1/(x-2)
=(x-1)+1/(x-2)
=(x-2)+1/(x-2)+1
因为x>2,
x-2>0
所以式中的(x-2)+1/(x-2)≥2,
即
y=(x-2)+1/(x-2)+1有最小值
2+1=3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询