二元函数极值应用题

二元函数极值的实际应用题某三轮车厂没生产一副框架就要搭配三副轮胎,设轮胎数量为x,价格为p1,框架数量为y,价格为p2,又设需求函数分别为x=63-0.25p1与y=60... 二元函数极值的实际应用题
某三轮车厂没生产一副框架就要搭配三副轮胎,设轮胎数量为x,价格为p1,框架数量为y,价格为p2,又设需求函数分别为x=63-0.25p1与y=60-1/3p2,成本函数为C(x,y)=x^2+xy+y^2+90,求该厂利润最大时的产出及价格
展开
 我来答
巢甫豆杰
2020-06-15 · TA获得超过1144个赞
知道小有建树答主
回答量:1806
采纳率:100%
帮助的人:8.4万
展开全部
p1=(63-x)*4,p2=(60-y)*3,x=3y,
利润:4x(63-x)+3y(60-y)-(x^2+xy+y^2+90),
将x=3y带入,得12y(63-3y)+3y(60-y)-(9y^2+3y^2+y^2+90),
化简得-52(y-9)^2+4122
所以最大利润时生产轮胎27个,价格为144元,框架9个,价格为153元.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式