极限存在一定连续吗
3个回答
展开全部
不对。连续一定极限存在,极限存在不一定连续。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。
函数f(x)在x0连续,当且仅当f(x)满足以下三个条件:f(x)在x0及其领域内有定义;f(x)在x0的极限存在;f(x)在x0的极限值与函数值f(x0)相等。
在函数极限的定义中曾经强调过,当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于现在函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。
扩展资料:
连续函数的法则:
1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0) 运算,结果仍是一个在该点连续的函数。
2、连续单调递增 (递减)函数的反函数,也连续单调递增 (递减)。
3、连续函数的复合函数是连续的。
函数f(x)在x0连续,当且仅当f(x)满足以下三个条件:f(x)在x0及其领域内有定义;f(x)在x0的极限存在;f(x)在x0的极限值与函数值f(x0)相等。
在函数极限的定义中曾经强调过,当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于现在函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。
扩展资料:
连续函数的法则:
1、在某点连续的有限个函数经有限次和、差、积、商(分母不为0) 运算,结果仍是一个在该点连续的函数。
2、连续单调递增 (递减)函数的反函数,也连续单调递增 (递减)。
3、连续函数的复合函数是连续的。
2020-11-10
展开全部
不一定哦。
连续是某一点的极限值,等于这点的函数值。也就是说,当某点处的极限不等于函数值时,则在该点不连续。
连续是某一点的极限值,等于这点的函数值。也就是说,当某点处的极限不等于函数值时,则在该点不连续。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
极限不存在是指:
1.
极限为无穷大时,极限不存在.
2.
左极限与右极限不相等.
极限存在是指:
1.
存在左右极限且左极限等于右极限
2.
函数连续
3.
函数的值等于该点处极限值
1.
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”
极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
2.
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。
1.
极限为无穷大时,极限不存在.
2.
左极限与右极限不相等.
极限存在是指:
1.
存在左右极限且左极限等于右极限
2.
函数连续
3.
函数的值等于该点处极限值
1.
“极限”是数学中的分支——微积分的基础概念,广义的“极限”是指“无限靠近而永远不能到达”的意思。数学中的“极限”指:某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”
极限是一种“变化状态”的描述。此变量永远趋近的值A叫做“极限值”(当然也可以用其他符号表示)。
2.
极限思想是微积分的基本思想,是数学分析中的一系列重要概念,如函数的连续性、导数(为0得到极大值)以及定积分等等都是借助于极限来定义的。如果要问:“数学分析是一门什么学科?”那么可以概括地说:“数学分析就是用极限思想来研究函数的一门学科,并且计算结果误差小到难于想像,因此可以忽略不计。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询