已知数列{an}满足条件:(n-1)an+1=(n+1)(an-1)(n∈N*),求an通项公式。

已知数列{an}满足条件:(n-1)an+1=(n+1)(an-1)(n∈N*),求an通项公式。(前面的an+1中n+1为底数,后面an-1中n为底数)求过程!~~~~... 已知数列{an}满足条件:(n-1)an+1=(n+1)(an-1)(n∈N*),求an通项公式。(前面的an+1中n+1为底数,后面an-1中n为底数)

求过程!~~~~~~求详解
条件里还有a2=6 忘记打了
展开
MonkeyD以及古
2011-01-30 · TA获得超过322个赞
知道答主
回答量:156
采纳率:0%
帮助的人:174万
展开全部
(n-1)an+1=(n+1)(an-1)可化为an+1/(n+1)=an/(n-1)-1/(n-1),(前面的an+1中n+1为底数)
两边同时除以n,可得:an+1/n(n+1)=an/n(n-1)-1/n(n-1),设数列an/n(n-1)为bn,
则bn+1=bn-[1/n(n-1)](n>1),将1/n(n-1)裂项为1/(n-1)-1/n
则bn+1=bn+[1/n-1/(n-1)]………(1)
bn=bn-1+[1/(n-1)-1/(n-2)]…………(2)
……
b3=b2+[1/2-1/1]…………(n-1)
将以上(n-1)个式子相加,得bn+1=b2+(1/n)-1
又b2=a2/2,所以b2=3,因此bn+1=3+(1/n)-1,即bn+1=2+1/n,即bn=1+1/(n-1)(n>1)
所以an=n(n-1)bn=n(n-1)+n,(n>1)
将(n-1)an+1=(n+1)(an-1)中n代1,则可得a1=1
因为a1符合an的通项,所以可写在一起,即an=n(n-1)bn=n(n-1)+n
SNOWHORSE70121
2011-01-30 · TA获得超过1.8万个赞
知道大有可为答主
回答量:4806
采纳率:100%
帮助的人:2647万
展开全部
(n-1)a(n+1)=(n+1)[a(n)-1],n=1,2,...
n=1,0=2[a(1)-1], a(1)=1.
n=2,a(3)=3[a(2)-1].
n=3,2a(4)=4[a(3)-1],a(4)=2[a(3)-1]=2[3a(2)-4],
由于a(2)可取任何值,因此{a(n)}的通项公式不存在哈~~~
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式