问一个用微分中值定理解决的证明题.f(x)在[0,1]上二阶可导,且f(0)=f...

问一个用微分中值定理解决的证明题.f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明存在t属于(0,1),使得f''(t)=2f'(t)/(1-t).我找出了... 问一个用微分中值定理解决的证明题. f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明存在t属于(0,1),使得f''(t)=2f'(t)/(1-t). 我找出了辅助函数G(x)=f'(x)(1-x)-f(x),但如何证明它在(0,1)内有两个值相同的点? 展开
 我来答
春嫣完颜睿博
2019-12-13 · TA获得超过3913个赞
知道大有可为答主
回答量:3130
采纳率:26%
帮助的人:191万
展开全部
换个思路
证明:
∵f(0)=f(1)=0
∴由微分中值定理知,存在ξ∈(0,1),使得f'(ξ)=0
令G(x)=(1-x)²f'(x),则G(ξ)=G(1)=0
∴由微分中值定理知,存在t∈(ξ,1),使G'(t)=0
即(1-t)²f''(t)-2(1-t)f'(t)=0
∵t
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式