问一个用微分中值定理解决的证明题.f(x)在[0,1]上二阶可导,且f(0)=f...
问一个用微分中值定理解决的证明题.f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明存在t属于(0,1),使得f''(t)=2f'(t)/(1-t).我找出了...
问一个用微分中值定理解决的证明题. f(x)在[0,1]上二阶可导,且f(0)=f(1)=0,证明存在t属于(0,1),使得f''(t)=2f'(t)/(1-t). 我找出了辅助函数G(x)=f'(x)(1-x)-f(x),但如何证明它在(0,1)内有两个值相同的点?
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询