证明:A是n阶方阵,A不等于0,则存在一个非零矩阵B,使得AB=0的充要条件为A的行列式的值=0

 我来答
敖元洲w0
2019-10-23 · TA获得超过947个赞
知道小有建树答主
回答量:1815
采纳率:100%
帮助的人:8.3万
展开全部
反证法:若A的行列式不为零,则A的秩为n,即A满秩,A可逆,等式两边的左侧都乘以A的逆矩阵,得到B=0,矛盾,故A不可逆,极为A的行列式值为0.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式