![](https://iknow-base.cdn.bcebos.com/lxb/notice.png)
已知函数f(x)=-x方+ax-a/4+1/2 在区间[0,1]上的最大值是2,求实数a的取值范围 谢谢~
1个回答
展开全部
f(x)=-x^2+ax-a/4+1/2
=-(x-a/2)^2+(a^2-a+2)/4 在区间[0,1]上的最大值是2,
1)0<=a<=2时(a^2-a+2)/4=2,a^2-a-6=0,a=-2,或3(舍);
2)a<0时f(0)=-a/4+1/2=2,a=-6;
3)a>2时f(1)=3a/4-1/2=2,a=10/3.
综上,a的取值范围是{-6,10/3}.
=-(x-a/2)^2+(a^2-a+2)/4 在区间[0,1]上的最大值是2,
1)0<=a<=2时(a^2-a+2)/4=2,a^2-a-6=0,a=-2,或3(舍);
2)a<0时f(0)=-a/4+1/2=2,a=-6;
3)a>2时f(1)=3a/4-1/2=2,a=10/3.
综上,a的取值范围是{-6,10/3}.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询