几何的发展历史简述
1个回答
展开全部
几何学的发展大致经历了四个基本阶段。
1、实验几何的形成和发展
几何学最早产生于对天空星体形状、排列位置的观察,产生于丈量土地、测量容积、制造器皿与绘制图形等实践活动的需要,人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何.我国古代、古埃及、古印度、巴比伦所研究的几何,大体上就是实验几何的内容。
例如,我国古代很早就发现了勾股定理和简易测量知识,《墨经》中载有“圜(圆),一中同长也”,“平(平行),同高也”,古印度人认为“圆面积等于一个矩形的面积,而该矩形的底等于半个圆周,矩形的高等于圆的半径”等等,都属于实验几何学的范畴。
2、理论几何的形成和发展
随着古埃及、希腊之间贸易与文化的交流,埃及的几何知识逐渐传入古希腊.古希腊许多数学家,如泰勒斯(Thales)、毕达哥拉斯(Pythagoras)、柏拉图(Plato)、欧几里德(Euclid)等人都对几何学的研究作出了重大贡献.特别是柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,而后欧几里德在前人已有几何知识的基础上,按照严密的逻辑系统编写的《几何原本》十三卷,奠定了理论几何(又称推理几何、演绎几何、公理几何、欧氏几何等)的基础,成为历史上久负盛名的巨著。
《几何原本》尽管存在公理的不完整,论证有时求助于直观等缺陷,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法对以后数学的发展指出了方向,以至成为整个人类文明发展史上的里程碑,全人类文化遗产中的瑰宝。
3、解析几何的产生与发展
公元3世纪,《几何原本》的出现,为理论几何奠定了基础.与此同时,人们对圆锥曲线也作了一定研究,发现了圆锥曲线的许多性质.但在后来较长时间里,封建社会中的神学占有统治地位,科学得不到应有的重视.直到15、16世纪欧洲资本主义开始发展起来,随着生产实际的需要,自然科学才得到迅速发展.法国笛卡尔(Descartes)在研究中发现,欧氏几何过分依赖于图形,而传统的代数又完全受公式、法则所约束,他们认为传统的研究圆锥曲线的方法,只重视几何方面,而忽略代数方面,竭力主张将几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。
4、现代几何的产生与发展
在初等几何与解析几何的发展过程中,人们不断发现《几何原本》在逻辑上不够严密之处,并不断地充实一些公理,特别是在尝试用其他公理、公设证明第五公设“一条直线与另外两条直线相交,同侧的内角和小于两直角时,这两条直线就在这一侧相交”的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。
1、实验几何的形成和发展
几何学最早产生于对天空星体形状、排列位置的观察,产生于丈量土地、测量容积、制造器皿与绘制图形等实践活动的需要,人们在观察、实践、实验的基础上积累了丰富的几何经验,形成了一批粗略的概念,反映了某些经验事实之间的联系,形成了实验几何.我国古代、古埃及、古印度、巴比伦所研究的几何,大体上就是实验几何的内容。
例如,我国古代很早就发现了勾股定理和简易测量知识,《墨经》中载有“圜(圆),一中同长也”,“平(平行),同高也”,古印度人认为“圆面积等于一个矩形的面积,而该矩形的底等于半个圆周,矩形的高等于圆的半径”等等,都属于实验几何学的范畴。
2、理论几何的形成和发展
随着古埃及、希腊之间贸易与文化的交流,埃及的几何知识逐渐传入古希腊.古希腊许多数学家,如泰勒斯(Thales)、毕达哥拉斯(Pythagoras)、柏拉图(Plato)、欧几里德(Euclid)等人都对几何学的研究作出了重大贡献.特别是柏拉图把逻辑学的思想方法引入几何学,确立缜密的定义和明晰的公理作为几何学的基础,而后欧几里德在前人已有几何知识的基础上,按照严密的逻辑系统编写的《几何原本》十三卷,奠定了理论几何(又称推理几何、演绎几何、公理几何、欧氏几何等)的基础,成为历史上久负盛名的巨著。
《几何原本》尽管存在公理的不完整,论证有时求助于直观等缺陷,但它集古代数学之大成,论证严密,影响深远,所运用的公理化方法对以后数学的发展指出了方向,以至成为整个人类文明发展史上的里程碑,全人类文化遗产中的瑰宝。
3、解析几何的产生与发展
公元3世纪,《几何原本》的出现,为理论几何奠定了基础.与此同时,人们对圆锥曲线也作了一定研究,发现了圆锥曲线的许多性质.但在后来较长时间里,封建社会中的神学占有统治地位,科学得不到应有的重视.直到15、16世纪欧洲资本主义开始发展起来,随着生产实际的需要,自然科学才得到迅速发展.法国笛卡尔(Descartes)在研究中发现,欧氏几何过分依赖于图形,而传统的代数又完全受公式、法则所约束,他们认为传统的研究圆锥曲线的方法,只重视几何方面,而忽略代数方面,竭力主张将几何、代数结合起来取长补短,认为这是促进数学发展的一个新的途径。
4、现代几何的产生与发展
在初等几何与解析几何的发展过程中,人们不断发现《几何原本》在逻辑上不够严密之处,并不断地充实一些公理,特别是在尝试用其他公理、公设证明第五公设“一条直线与另外两条直线相交,同侧的内角和小于两直角时,这两条直线就在这一侧相交”的失败,促使人们重新考察几何学的逻辑基础,并取得了两方面的突出研究成果。
上海华然企业咨询
2024-10-28 广告
2024-10-28 广告
上海华然企业咨询有限公司专注于AI与数据合规咨询服务。我们的核心团队来自头部互联网企业、红圈律所和专业安全服务机构。凭借深刻的AI产品理解、上百个AI产品的合规咨询和算法备案经验,为客户提供专业的算法备案、AI安全评估、数据出境等合规服务,...
点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |