已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上
已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最高点为M(∏/6,2)。1.求F(X)的解析式,2.当X∈...
已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最高点为M(∏/6,2)。
1.求F(X)的解析式,
2.当X∈[0,∏/4]时,F(X)的最值及相应x的值 展开
1.求F(X)的解析式,
2.当X∈[0,∏/4]时,F(X)的最值及相应x的值 展开
展开全部
因为周期为π,则T=2π/ω=π
ω=2
所以 f(x)=Asin(2x+φ)
因为最低点为M(2∏/3,-2)
则最底点是sin(2*2π/3+φ)=sin(4π/3+φ)=-1
则4π/3+φ=2kπ-π/2
φ=2kπ-π/2-4π/3=2kπ-11π/6=2kπ-2π+π/6=2(k-1)π+π/6
因为0<φ<π/2
所以φ=π/6
因为sin(2x+π/6)=-1
则-A=-2
A=2
所以f(x)=2sin(2x+π/6)
当-1<=sin(2x+π/6)<=1
时
2kπ-π/2<=2x+π/6<=2kπ+π/2
2kπ-2π/3<=2x<=2kπ+π/3
kπ-π/3<=x<=kπ+π/6
所以当x=π/6时有最大值f(π/6)=2
因为|0-π/6|=π/6
|π/6-π/12|=π/12
π/6>π/12
x=0离x=π/6比x=π/12离x=π/6要远些
所以当x=0时有最小值f(0)=1
ω=2
所以 f(x)=Asin(2x+φ)
因为最低点为M(2∏/3,-2)
则最底点是sin(2*2π/3+φ)=sin(4π/3+φ)=-1
则4π/3+φ=2kπ-π/2
φ=2kπ-π/2-4π/3=2kπ-11π/6=2kπ-2π+π/6=2(k-1)π+π/6
因为0<φ<π/2
所以φ=π/6
因为sin(2x+π/6)=-1
则-A=-2
A=2
所以f(x)=2sin(2x+π/6)
当-1<=sin(2x+π/6)<=1
时
2kπ-π/2<=2x+π/6<=2kπ+π/2
2kπ-2π/3<=2x<=2kπ+π/3
kπ-π/3<=x<=kπ+π/6
所以当x=π/6时有最大值f(π/6)=2
因为|0-π/6|=π/6
|π/6-π/12|=π/12
π/6>π/12
x=0离x=π/6比x=π/12离x=π/6要远些
所以当x=0时有最小值f(0)=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询