摆线参数方程推导

求摆线方程推导。一个圆在水平地面滚动,圆周上一点形成的轨迹方程。请详细写出推导过程。... 求摆线方程推导。一个圆在水平地面滚动,圆周上一点形成的轨迹方程。请详细写出推导过程。 展开
 我来答
厍颜牛傲冬
2020-04-18 · TA获得超过4054个赞
知道大有可为答主
回答量:3217
采纳率:35%
帮助的人:183万
展开全部
摆线是数学中众多的迷人曲线之一.它是这样定义的:一个圆沿一直线缓慢地滚动,则圆上一固定点所经过的轨迹称为摆线
x=a(φ-sinφ),y=a(1-cosφ)
设该点初始坐标为(0,0),圆心坐标为(0,a)
当圆转动φ时,圆心坐标为(aφ,
a)
该点相对于圆心坐标为(-asinφ,-acosφ)
所以该点坐标为(a(φ-sinφ),a(1-cosφ))
即x=a(φ-sinφ),y=a(1-cosφ)
再给你补充个次摆线的参数方程
次摆线
一个动圆沿着一条定直线作无滑动的滚动时,动圆外或动圆内一定点的轨迹。如图建立直角坐标系,设动圆的半径为a,圆心至圆外(内)定点m的距离为b,则次摆线的参数方程为x=aφ-bsinφ,y=a-bcosφ。b>a时为长幅旋轮线,b<a时为短幅旋轮线,b=a时即为摆线。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式