f(0)=0,f(1)=1f'(0)=f''(1)=0
已知f(0)=0,f(1)=1,f'(0)=f'(1)=0,求证|f''(x)|>4|f''(x)|>4,x属于(0,1),f(x)在[0,1]上连续且二阶可导存在|f'...
已知f(0)=0, f(1)=1,f'(0)=f'(1)=0,求证|f''(x)|>4
|f''(x)|>4, x属于(0,1),f(x)在[0,1]上连续且二阶可导
存在|f''(x)|>4, x属于(0,1)
题目还有个hint:consider h(x)=f(x)-2x^2 on the interval [0,0.5], and then repeat the argument with g(x)=1-f(1-x) in place of f(x) 展开
|f''(x)|>4, x属于(0,1),f(x)在[0,1]上连续且二阶可导
存在|f''(x)|>4, x属于(0,1)
题目还有个hint:consider h(x)=f(x)-2x^2 on the interval [0,0.5], and then repeat the argument with g(x)=1-f(1-x) in place of f(x) 展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询