为什么(-1)^n(n+1/n²)是条件收敛?

求详细的解答过程谢谢... 求详细的解答过程谢谢 展开
 我来答
奇澹皮芮丽
2021-03-03 · TA获得超过1112个赞
知道答主
回答量:15
采纳率:100%
帮助的人:3286
展开全部
级数(n=1→∞)∑(-1)^n*ln[(n+1)/n]=级数(n=1→∞)∑(-1)^nan
|(-1)^n*an|=ln(n+1)/n=ln(1+1/n)
而lim(n→∞
)
ln(1+1/n)/(1/n)=1
(罗必塔)
而∑1/n是发散的,所以∑ln(1+1/n)是发散的
所以不是绝对收敛
而an=ln(1+1/n)>an+1=ln(1+1/(n+1))
lim(n→∞)an=lim(n→∞)
ln(1+1/n)=0
所以由莱布里茨判别定理,可知该交错级数收敛
所以级数(n=1→∞)∑(-1)^n*ln[(n+1)/n]是条件收敛
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式