5个回答
展开全部
解:微分方程为(y-x³)dx-2xdy=0,
化为y-x³-2xy'=0,2xy'-y=-x³
y'/√x-y/2x√x=-0.5x√x,
(y/√x)'=-0.5x√x,
y/√x=-0.2x²√x+c(c为任意常数)
微分方程的通解为y=-0.2x³+c√x
解:微分方程为y²dx+(2xy+y²)dy=0
化为y²dx/dy+2yx=-y²,
d(y²x)/dy=-y²,y²x=-y³/3+c
(c为任意常数),方程的通解为
x=-y/3+c/y²(c为任意常数)
化为y-x³-2xy'=0,2xy'-y=-x³
y'/√x-y/2x√x=-0.5x√x,
(y/√x)'=-0.5x√x,
y/√x=-0.2x²√x+c(c为任意常数)
微分方程的通解为y=-0.2x³+c√x
解:微分方程为y²dx+(2xy+y²)dy=0
化为y²dx/dy+2yx=-y²,
d(y²x)/dy=-y²,y²x=-y³/3+c
(c为任意常数),方程的通解为
x=-y/3+c/y²(c为任意常数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
u=y/x
y= ux
dy/dx = x.du/dx + u
y^2. dx +(2xy+y^2) dy =0
y^2 +(2xy+y^2) dy/dx =0
(y/x)^2 +[2(y/x) + (y/x)^2] dy/dx =0
u^2 +(2u+u^2) .(x.du/dx + u) =0
u +(2+u) .(x.du/dx + u) =0
u+ (2+u)x.du/dx + u(2+u) =0
(2+u)x.du/dx = - (3u+u^2)
∫(2+u)/(u^2+3u) du = -∫dx/x
∫(2+u)/[u(u+3)] du = -∫dx/x
∫ { 1/u -1/[u(u+3)] } du = -∫dx/x
∫ { 1/u -(1/3) [1/u-1/(u+3) ] } du = -∫dx/x
∫ { (2/3)(1/u) +(1/3)[1/(u+3) ] } du = -∫dx/x
ln |u^(2/3). (u+3)^(1/3) | = -lnx + C'
u^(2/3). (u+3)^(1/3) = C''/x
u^2. (u+3) = C/x^3
y= ux
dy/dx = x.du/dx + u
y^2. dx +(2xy+y^2) dy =0
y^2 +(2xy+y^2) dy/dx =0
(y/x)^2 +[2(y/x) + (y/x)^2] dy/dx =0
u^2 +(2u+u^2) .(x.du/dx + u) =0
u +(2+u) .(x.du/dx + u) =0
u+ (2+u)x.du/dx + u(2+u) =0
(2+u)x.du/dx = - (3u+u^2)
∫(2+u)/(u^2+3u) du = -∫dx/x
∫(2+u)/[u(u+3)] du = -∫dx/x
∫ { 1/u -1/[u(u+3)] } du = -∫dx/x
∫ { 1/u -(1/3) [1/u-1/(u+3) ] } du = -∫dx/x
∫ { (2/3)(1/u) +(1/3)[1/(u+3) ] } du = -∫dx/x
ln |u^(2/3). (u+3)^(1/3) | = -lnx + C'
u^(2/3). (u+3)^(1/3) = C''/x
u^2. (u+3) = C/x^3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
得到y=xu,求导得dy/dx=u+xdu/dx
即u+xdu/dx = dy/dx = -y²/(2xy+y²) = -(y/x)²/(2y/x + (y/x)² ) = -u²/(2u + u²)
再通分、移项整理得到的那个结果
即u+xdu/dx = dy/dx = -y²/(2xy+y²) = -(y/x)²/(2y/x + (y/x)² ) = -u²/(2u + u²)
再通分、移项整理得到的那个结果
更多追问追答
追问
这个我会,主要是结果的不定积分怎么积的?
追答
拆项法。把那个带u的分式拆成多个不可再分的真分式:
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询