电子行业的废水的主要处理方法有哪些?
电子行业中在印制线路板过程中每个环节不单有大量的废水产生,这一工业的主要污染物是重金属镍,电子工业的废水特征是排放量大、含有腐蚀成分、成分多样化,而重金属元素对人体健康以及自然界中的鱼种、浮游生物有着巨大的危害,严重时可以造成粮食作物减产或禽畜的死亡。
本文简单介绍一下电子工业的电路板废水处理工艺:
对于含镍废水需进行破氰处理,然后在经过破氰处理的含镍废水通过水泵流入调节池中。
往含镍废水中加入熟石灰主要是为了调节ph值至9~ 10,这时加入氧化剂(去除残
留氢氰根),经过沉淀处理后就会得到第一滤液和滤渣。
将第一滤液的ph值调节至7 ~ 8加入金属捕捉剂强碱、絮凝剂以及助凝剂,充分反应后会形成污泥和第二滤液。
将第二滤液的ph值调节至中性,调节后的滤液流入生化系统的水解酸化池,向水解酸化池中引入经过二级处理的综合污水,在进水结束后持续搅拌0
.5小时。
在缺氧搅拌的过程中将难降解的大分子有机物质转化为相对易降解的小分子有机物质,形成第三滤液。
最后按环境规定必须做严格处理,满足排放标准即可排放。
由于不用的工厂生产的电子设备不同,工业污水的成分不同,大部分含有硫酸镍、氯化镍和硝酸镍等污染物,成份差异较大,因此不同的类型的工业废水制定环境处理方案是不一样。
2024-11-21 广告
部分亚硝化-厌氧氨氧化作为一种新型的组合生物脱氮工艺,具有无需有机物参与,避免脱氮过程产生的二次污染,耗氧量少和耐高盐度的特点而受到广泛关注[3, 4, 5]. 目前,部分亚硝化厌氧氨氧化联合工艺已经成功地运用到垃圾渗滤液[6,7]、 味精废水[8]、 化工废水[9]等行业高氨废水的处理.
然而,好氧氨氧化菌和厌氧氨氧化菌存在溶解氧、 pH等生理特性方面差异[10],导致联合运行过程中存在控制难度. 为此本课题组设计了一种新型的亚硝化-厌氧氨氧化一体化装置,实现亚硝化与厌氧氨氧化菌在单一反应器分区培养. 该装置后置亚硝化工艺,利用亚硝化曝气尾气将亚硝化液气升回流至厌氧区,并成功实现了含氨废水的自养生物脱氮处理,脱氮速率最终稳定在1.46 kg ·(m3 ·d)-1 [11].
为此,本文将采用此一体化反应器进行碱性PCB废液处理,研究一体化反应器处理碱性PCB废水的可行性及处理过程中反应器的运行特性,旨在为电子行业含氨的碱性PCB废水脱氮处理提供一个新的工艺与装备. 1 材料与方法 1.1 装置与运行条件
亚硝化-厌氧氨氧化一体化反应器由下部直径100 mm和上部直径140 mm的圆柱形有机玻璃制成,总高度920 mm,总有效体积12 L(图 1). 其中下部厌氧区5.25 L(由污泥流化区3.67 L,厌氧生物膜区1.58 L组成),上部好氧生物膜区4.43 L,污泥沉淀区2.32 L. 好氧区溶解氧维持在0.5~1 mg ·L-1之间,由气体转子流量计控制进入的空气流量实现. 好氧区曝气后的尾气由三相分离器收集后通过导气管引入气升室,使得好氧区的亚硝化液气升入气升室. 亚硝化液在气升室内通过回流管回流至反应器底部的污泥流化区,以满足厌氧氨氧化菌对NO2--N的需求. 进水运行方式为连续流,流量由蠕动泵控制. 整个反应器的温度控制在30℃±2℃,由气浴加热控制调节.
电子行业废水具有水质波动大、含有有毒物质、处理难度大等特点。电子行业废水的处理基本采用物化法(酸碱调节、加药沉淀)处理,达到当地污水排放标准后排入附近水体或排入污水处理厂与生活污水混合进行处理,回用难度较大。