已知方程 √(x^2+y^2)=e^[arctan(y/x)]确定了y=y(x),求dy
2个回答
展开全部
已知方程√(x^2+y^2)=e^[arctan(y/x)]确定了y=y(x),求dy
解:
√(x^2+y^2)=e^[arctan(y/x)]【两边取对数】
==>1/2ln(x^2+y^2)=arctan(y/x)*lne【两边同时求导】
==>1/2*1/(x^2+y^2)*(x^2+y^2)'=1/[1+y/x)^2]*(y/x)'
==>1/2(x^2+y^2)*(2x+2y*y')=x^2/(x^2+y^2)*(y'x-y)/x^2
==>(x+yy')/(x^2+y^2)=(y'x-y)/(x^2+y^2)
==>(x+yy')/(x^2+y^2)-(y'x-y)/(x^2+y^2)=0
==>(x+yy')-(y'x-y)=0
==>y'(x-y)=x+y
==>y'=(x+y)/(x-y)
解:
√(x^2+y^2)=e^[arctan(y/x)]【两边取对数】
==>1/2ln(x^2+y^2)=arctan(y/x)*lne【两边同时求导】
==>1/2*1/(x^2+y^2)*(x^2+y^2)'=1/[1+y/x)^2]*(y/x)'
==>1/2(x^2+y^2)*(2x+2y*y')=x^2/(x^2+y^2)*(y'x-y)/x^2
==>(x+yy')/(x^2+y^2)=(y'x-y)/(x^2+y^2)
==>(x+yy')/(x^2+y^2)-(y'x-y)/(x^2+y^2)=0
==>(x+yy')-(y'x-y)=0
==>y'(x-y)=x+y
==>y'=(x+y)/(x-y)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询